# 潮汐

(已重新導向自 海潮)

 加拿大芬地灣的滿潮。 加拿大芬地灣的乾潮。

## 特徵

• 海水經歷幾個小時的上漲或在海灘上進展，
• 水達到被稱為高潮的最大高度。
• 經歷幾個小時的海平面降低，或是像瀑布一樣從海灘退出，
• 水面在所謂的低潮停止降低。

## 潮汐的組成

### 變動的範圍：大潮和小潮

 圖2：藝術家概念下的大潮 圖3：藝術家概念下的小潮

## 物理學

### 力

$T_v = \frac{GmR}{D^3}(3\cos^2\theta -1)$$T_h = \frac{3GmR}{2D^3}\sin2\theta$

## 規律

$h = \frac{mR^4}{2MD^3}(\cos2\theta +1)$,

## 參考資料

1. ^ M. P. M. Reddy, M. Affholder. Descriptive physical oceanography: State of the Art. Taylor and Francis. 2001: 249. ISBN 9054107065. OCLC 223133263 47801346.
2. ^ B.C. Punmia, Ashok Kumar Jain, Arun K Jain. Surveying Vol. 2. Laxmi Publications. 2005: 317. ISBN 8170080800.
3. ^ Richard Hubbard. Boater's Bowditch: The Small Craft American Practical Navigator. McGraw-Hill Professional. 1893: 54. ISBN 0071361367. OCLC 44059064.
4. ^ The orientation and geometry of the coast affects the phase, direction, and amplitude of amphidromic systems, coastal Kelvin waves as well as resonant seiches in bays. In estuaries seasonal river outflows influence tidal flow.
5. ^ Mellor, George L. Introduction to physical oceanography. Springer. 1996. ISBN 1563962101., p. 169
6. ^ Tide tables usually list mean lower low water (mllw, the 19 year average of mean lower low waters), mean higher low water (mhlw), mean lower high water (mlhw), mean higher high water (mhhw), as well as perigean tides. These are mean in the sense that they are predicted from mean data. Glossary of Coastal Terminology: H–M, Washington Department of Ecology, State of Washington (checked 5 April 2007).
7. ^ 不要和月球在天文學上的太陰日混淆了，月球中天是月球在天球上的最高點。
8. ^ Moon - encyclopedia article - Citizendium
9. ^ 潮汐力（tidal force）
10. ^ Types and causes of tidal cycles. U S National Oceanic and Atmospheric Administration (NOAA) National Ocean Service（Education section）.
11. ^ U S National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (Education section), map showing world distribution of tide patterns, semidiurnal, diurnal and mixed semidiurnal.
12. ^ H V Thurman. Introductory Oceanography 7. New York, NY: Macmillan. 1994: 252–276.ref
13. ^ D A Ross. Introduction to Oceanography. New York, NY: HarperCollins. 1995: 236–242.
14. ^ Y. Accad, C. L. Pekeris. Solution of the Tidal Equations for the M2 and S2 Tides in the World Oceans from a Knowledge of the Tidal Potential Alone. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. November 28, 1978, 290 (1368): 235–266.
15. ^ Tide forecasts. New Zealand: National Institute of Water & Atmospheric Research. [2008-11-07]. Including animations of the M2, S2 and K1 tides for New Zealand.
16. ^ 16.0 16.1 See E Lisitzin, "Sea-Level Changes", (Elsevier Oceanography Series, vol.8, 1974), ch.2: "Periodical sea-level changes: Astronomical tides", at p.5.
17. ^ See also U S National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (Education section), "What Causes Tides?"
18. ^ See for example, in the 'Principia' (Book 1) (1729 translation), Corollaries 19 and 20 to Proposition 66, on pages 251-254, referring back to page 234 et seq.; and in Book 3 Propositions 24, 36â and 37, starting on page 255.
19. ^ See J Wahr, "Earth Tides", pages 40-46 in "Global Earth Physics", American Geophysical Union Reference Shelf #1, (1995).
20. ^ Yang Zuosheng, K. O. Emery, Xui Yui. Historical Development and Use of Thousand-Year-Old Tide-Prediction Tables. Limnology and Oceanography. July 1989, 34 (5): 953–957.
21. ^ {{cite book title=Tides: A Scientific History |author=David E. Cartwright |publisher=Cambr₥×idge University Press |location=Cambr€idge, UK |date=1999 }}
22. ^ Case, James. Understanding Tides—From Ancient Beliefs to Present-day Solutions to the Laplace Equations. SIAM News. March 2000, 33 (2).
23. ^ A T Doodson. The Harmonic Development of the Tide-Generating Potential. Proceedings of the Royal Society of London. Series A. December 1921, 100 (704): 305–329.
24. ^ S Casotto, F Biscani. A fully analytical approach to the harmonic development of the tide-generating potential accounting for precession, nutation, and perturbations due to figure and planetary terms. AAS Division on Dynamical Astronomy. April 2004, 36 (2): 67.
25. ^ See e.g. T D Moyer (2003), "Formulation for observed and computed values of Deep Space Network data types for navigation", vol.3 in Deep-space communications and navigation series, Wiley (2003), e.g. at pp.126-8.
26. ^ Ng, Chiu-king. How tidal forces cause ocean tides in the equilibrium theory. Physics Education. March 2015, 50 (2): 159–164. doi:10.1088/0031-9120/50/2/159.
27. ^ 田曉岑. 潮汐現象的成因. 大學物理. 1996年10月, 15 (10): 24–27.
28. ^ 科普：為什麼一天漲兩次潮（潮汐高度計算）. 珍珠灣.
29. ^