熱處理

維基百科,自由的百科全書
前往: 導覽搜尋

熱處理是將材料加熱到一定的溫度,保溫一定的時間後,以一定的速率降溫到室溫或更低,從而達到改善材料組織結構獲得性能優異的材料,一般是指對金屬材料特別是鋼材的處理,常用的是「四把火」:正火(在台灣稱為正常化)、退火回火淬火(淬火和高溫回火兩個過程通常稱為調質)。

產業上,熱處理可以視為一系列的冶金工程步驟,用來改變材料的物理性質,偶而也用來改變材料的化學性質。熱處理在冶金學方面有非常普及的應用,但是陶瓷、玻璃材料製程也常有熱處理程序的出現。熱處理用升高或冷卻的方式進行,通常涉及極端的溫度,以期改變材料的硬度性質。

隨著熱處理技術的進步,熱處理的定義可以改寫成透過溫度的控制與冷卻速率的調整,來改變材料的特性。比方說目前的深冷技術(或稱深冷處理),便是將鋼材在淬火後冷卻到零下七八十度到一百多度的熱處理技術。

正處於980℃的熱處理爐

物理過程[編輯]

金屬材料在微觀結構下有很多細小的晶體稱為晶粒。晶粒的大小、組成可謂影響金屬機械性質最決定性的因素。熱處理提供一種有效的方式來控制金屬微觀結構下的擴散速率與冷卻速率,來達到需要的金屬性質。通常熱處理要改變的機械性質不外乎五種: 1.硬度 2.應力-應變性質 3.韌性 4.延性 5.彈性

熱處理有兩種重要的機轉可以改變合金的性質: 1.麻田散鐵轉變,用來產生形變 2.金屬擴散機轉,用來改變同質性(使材料呈現單一特徵的傾向)

組成的影響[編輯]

合金系統的確切組成對於熱處理的結果有巨大的影響。若合金中各組成物的比例正確無誤,則冷卻後該合金將呈現單一且連續的微觀結構,此混合物稱之為共晶系統。然而,若是合金中組成物溶質的比例異於共晶系統,則兩種或兩種以上的微觀結構將同時形成。溶質的含量以過共析溶液高於共晶混合物,共晶混合物又高於亞共析溶液。