蟹狀星雲

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
蟹狀星雲
觀測資料:曆元 J2000.0
類型超新星殘骸
赤經05h 34m 31.97s[1]
赤緯+22° 00′ 52.1″[1]
距離6.5±1.6 千光年(2.0±0.5 千秒差距[2]
視星等(V)+8.4
視大小(V)420″ × 290″[3][a]
星座金牛座
物理性質
半徑5.5光年(1.7秒差距)[4]
絕對星等(V)−3.1±0.5[b]
顯著特性光學波霎
其他名稱Messier 1[1]、NGC 1952[1]Sharpless 244
參見:瀰漫星雲星雲列表

蟹狀星雲M1[1]NGC 1952[1]金牛座 A)是位於金牛座ζ星天關)東北面的一個超新星殘骸脈衝風星雲,是銀河系英仙臂的一部分,距地球約6,500光年(2,000秒差距[2],直徑達11光年(3.4秒差距)[4],並以每秒約1,500公里的速度膨脹。

該星雲由約翰·貝維斯於1731年發現,對應中國阿拉伯日本天文學家於公元1054年記錄的一次超新星爆發(編號SN 1054,中國稱天關客星)。1969年天文學家發現星雲的中心是一顆脈衝星[5],直徑約28–30公里,每秒自轉30.2次,並發射出從γ射線無線電波的寬頻率範圍電磁波。它也是首顆被確認為歷史上超新星爆發遺蹟的天體。

蟹狀星雲的X射線和γ射線輻射能量超過30 keV,最高可達450 TeV,而且非常穩定,因此天文學家將蟹狀星雲看成是宇宙中最穩定的高能輻射源之一,並將其作為一種標準來測量宇宙其他輻射源的能量。此星雲是一個很好的輻射源,通過其他天體的掩星可以研究它與其他的天體。20世紀50和60年代時,天文學家曾藉助穿過日冕的蟹狀星雲輻射對太陽日冕進行密度和成分測定[6]。2003年,土衛六阻擋了蟹狀星雲的X射線輻射,天文學家藉此機會測量土衛六的大氣層的厚度[7]

起源[編輯]

蟹狀星雲產生於公元1054年一次明亮的超新星爆發:SN 1054。當時中國[8][9][10][11][12][13]、印度、阿拉伯[14][15]和日本天文學家都記錄了這一天文現象。而該星雲則是由約翰·貝維斯於1731年首次觀測到的。1758年,查爾斯·梅西耶在觀測一顆亮彗星時獨立地再次發現該星雲。於是梅西耶將其作為自己的類彗星天體星表中第一個成員。1848年,羅斯伯爵比爾城堡觀測到了此星雲,因為他繪製的圖像形狀與螃蟹類似[16][17],因此被稱為蟹狀星雲。

NASA製作的蟹狀星雲影片

20世紀早期,對早期間隔數年的星雲照片進行的分析顯示它正在不斷膨脹。根據其膨脹速度反推可得,該星雲在地球上開始可見的時間至少在900年以前。而中國天文學家在1054年的記錄在天空的相同區域產生過一顆亮星,甚至白天都可觀測到[18][19]。雖然距離十分遙遠,但是當時中國人觀測到的客星在白天也能看見,因此只可能是超新星。這是一種自身的核融合已經終止並坍縮,從而發生爆炸的大質量恆星。

近期對歷史記載的分析表明,產生蟹狀星雲的超新星爆發時間為4月或5月上旬,到了7月最亮時視星等升至-7到-4.5之間(比夜空中除了月球以外的任何天體都亮)。該超新星在首次發現大約兩年之內都可用肉眼看到[20]。歸功於東亞中東地區的天文學家在1054年的觀測記錄,蟹狀星雲成為第一個被確認與超新星爆發有關的天體[19]

物理狀態[編輯]

斯皮策空間望遠鏡拍攝的蟹狀星雲紅外線圖像
哈勃太空望遠鏡拍攝的蟹狀星雲的一小塊區域,它錯綜複雜的絲狀結構展現了瑞利-泰勒不穩定性[21]。圖片來自NASA/ESA

蟹狀星雲在可見光區中有大量橢圓形的絲狀結構圍繞著彌散的藍色核心區域,長達6角分,寬達4角分(相比而言,滿月的直徑為30角分),是視直徑最大的天體之一。從三維的角度看,該星雲的形狀是一個長橢球體[3]。這些絲狀結構是前身星大氣層的殘餘成分,主要由離子化的組成,也含有。這些絲狀結構的溫度通常處於11,000–18,000K之間,而它們的密度大約為每立方厘米1,300個粒子[22]

距離和大小[編輯]

儘管蟹狀星雲是天文學家關注的焦點之一,但由於每種估測方法都存在不確定性,它的距離誤差仍然是一個懸而未決的問題。2008年得到的共識是它離地球的距離為2.0±0.5千秒差距(6.5±1.6千光年)。蟹狀星雲正以大約1,500 km/s的速度膨脹[23]。對間隔數年的星雲照片進行分析,結果是它正在緩慢膨脹[24],比較這種角膨脹和譜線紅移可以測定膨脹速度,此方法也能估測該星雲到地球的距離。1973年,一項運用多種不同方法測距的分析得出了它距離地球約6,300光年的結論[3]。根據它的視直徑大小及距離可以計算出其直徑約為13±3光年[c]

將時間追溯到1054年超新星爆發之後的幾十年,可以發現這個星雲自從產生以來就在不斷加速膨脹[25]。這種加速是因為中心的脈衝星產生的能量增強了星雲的磁場,從而使星雲膨脹,絲狀結構不斷向外伸展[26]

質量[編輯]

估測星雲的總質量對於估計對應超新星的前身星質量是至關重要的。蟹狀星雲絲狀結構含有的物質(離子和中性氣體噴射物,主要是[27])估計質量可達4.6±1.8M[28]

輻射[編輯]

1953年,約瑟夫·什克洛夫斯基(Iosif Shklovsky)提出彌散的藍色區域主要是由同步輻射造成的。這是指在磁場中迴轉的相對論性電子(運動速度接近光速的電子)因為徑向加速度垂直於速度而發射出的電磁輻射[29]。之後的觀測確認了此理論[30]。到了20世紀60年代,天文學家發現電子偏轉的洛倫茲力來自於星雲中心一顆中子星的強大磁場,在此力的作用下電子發生偏轉,並沿運動的切線方向發出電磁輻射[31]

自2010年9月19日起,天文學家觀測到蟹狀星雲的伽馬射線強度突然提高了2到3倍。一種解釋認為,爆發的短暫性表明電子還沒有加速到足以產生能量輻射的程度。當電子被加速到極高能量時,星雲磁場的強度可能也會比通常估計的要加強3到10倍。短暫的過程表明,伽馬射線可能源自星雲內部相對較小的一部分。另一種解釋則認為脈衝星的帶電粒子風闖入了星雲內部,並擠壓星雲的磁場。在這個過程中,磁場會釋放出巨大的能量,從而為電子加速提供能量源[32][33]

磁場[編輯]

蟹狀星雲的磁場強度約為10-3到10-4高斯,根據愛因斯坦質能方程,電子的總能量約為1049爾格。這顯然不能與剛形成時相提並論,因為絕大部分能量已通過絕熱損失輻射出去了[34]。它的磁場有序程度很高,據國際伽瑪射線天體物理實驗室的數據,其γ射線輻射有46%是偏振的,光子的電磁場也同向分布[35]美國國家航空暨太空總署戈達德太空飛行中心的大衛·湯普森說:「在天體物理學中,這是非常嚴重的事情。如此高比例的偏振意味著這裡得有非常好的條件,才能使磁場非常有序地排列。」

脈衝星磁場達到地球的1012倍以上,類似於棒狀磁場。上述事實表明脈衝星產生的粒子流速度很高,以至於非常接近脈衝星,才使磁場發生了扭曲。但由於目前儀器精度所限,還不能通過測量來確認[36]。蟹狀星雲是絕無僅有的觀測目標,因為其他脈衝星過於遙遠,難以深入研究。

其他[編輯]

目前人類對蟹狀星雲的觀測已覆蓋從無線電波到γ射線的整個波段。特別是錢德拉X射線天文台發射以後,它先後發現了兩極的噴流,環繞著脈衝星赤道平面的星環,高速運動的亮條紋(wisp)和X射線強度很高的結節(knots)[37][38]。這些結構的運動速度都很快,例如亮條紋可達光速的0.35至0.5倍,噴流也有光速的0.1倍[7][39]。而結節的亮度僅次於中央的脈衝星。其中蟹狀星雲的異常部分之一是富氦星環,它的星環從東向西穿過脈衝星區域。星環中大約25%是可見噴出物,而計算結果表明95%都是氦。因此目前對於星環的結構還沒有合理的解釋[40]

中心天體[編輯]

蟹狀星雲脈衝星的X射線照片

蟹狀星雲的中心有兩顆暗星,其中一顆與此星雲的形成直接相關。1942年,魯道夫·閔可夫斯基發現它的光譜極不尋常,從而確認了它的特殊性[41]。到了1949年,天文學家發現此星附近區域是很強的無線電波[42]和X射線輻射源[43]。1967年,它被確認為天空中γ射線輻射強度最大的天體之一[44]。第二年,地球上接受到它放出的輻射脈衝,因此它成為最早發現的脈衝星之一。

脈衝星是強大的電磁輻射源,它們以一定而且很短的周期釋放輻射脈衝,頻率可達每秒數百次。1967年剛發現這種天體時就產生一個令人費解的謎團,該團隊甚至考慮了那可能是先進文明發出的信號[45]。然而,在蟹狀星雲中心發現了脈衝射線源,這成為證明該星雲起源於超新星爆發的強有力的證據。現在認為它們是高速自轉的中子星,它們的強磁場將輻射約束成很窄的波束向外釋放。

據信,蟹狀星雲脈衝星的直徑約為28–30千米[46],它每隔33毫秒發射一次輻射脈衝[47]。輻射脈衝的波長跨越了從無線電波到γ射線的整個電磁波譜。與其他孤立的脈衝星一樣,它的自轉周期正在逐漸變慢。有時它的輻射周期會發生急劇變化,稱作自轉突變,這是由於中子星內部的突然重新組合引起的。脈衝星自轉減緩時放出巨大的能量,並發射同步輻射,總光度可達太陽的75,000倍之多[48]

蟹狀星雲中心區域由於脈衝星極高能量的不斷釋放而變得異常活躍。大多數天體的演化非常緩慢,只有經歷很長的時間尺度才能覺察出變化。而蟹狀星雲的內部在幾天之內就能產生明顯變化[49]。星雲內部最活躍的特徵,是脈衝星的赤道風猛烈衝擊稀疏的其他區域,形成激波陣面。這種激波的形狀和位置瞬息萬變,赤道風一陣陣地形成然後漸漸減弱並消失,這是因為它們進入了遠離脈衝星的星雲內部。

此圖混合了哈勃太空望遠鏡的光學數據(紅)與錢德拉X射線天文台的X射線圖像(藍)。
軌道天文台的數據說明蟹狀星雲的X射線輻射發生了沒有預料到的變化,可能是由於中心的中子星周圍環境變化造成的。
NASA的費米伽瑪射線空間望遠鏡拍攝的蟹狀星雲超級耀斑

前身星[編輯]

一系列哈勃太空望遠鏡拍攝的圖像表明蟹狀星雲內部特徵的變化周期為四個月。圖片來自:NASA/ESA

發生爆炸成為超新星的那顆恆星被稱作前身星(Progenitor star)。有兩種類型的恆星會發生超新星爆發:白矮星和大質量恆星。在所謂的Ia型超新星中,氣體不斷落在白矮星上,不斷增大其質量直至接近臨界值——錢德拉塞卡極限,最終的結果自然是發生爆炸。而對於Ib/c型II型超新星,它們的前身星是一顆核融合反應耗盡了燃料的大質量恆星,最終發生坍縮並不斷升溫,最終達到超新星爆發的臨界溫度。蟹狀星雲中心存在脈衝星表明它一定是由核心坍縮型超新星形成的,因為Ia型超新星不產生脈衝星。

超新星爆發的理論模型表明爆炸形成蟹狀星雲的前身星質量一定要在太陽質量的9到11倍之間[40][50]。質量小於8倍太陽質量的恆星因太小而不能發生超新星爆發,它們的最終宿命是行星狀星雲。如果一顆恆星的質量大於太陽的12倍,那麼它產生的星雲化學成分會與蟹狀星雲中實際檢測到的不符[51]。然而,最近的研究表明,前身星可能是8到10太陽質量範圍內的一顆超漸近巨星分支星,會在電子俘獲型超新星爆炸的範圍[52]。2021年6月,《自然天文學》雜誌上的一篇論文報導,2018年超新星SN 2018zd(位於星系NGC 2146中,距離地球約3100萬光年)似乎是天文學家首次觀測到電子俘獲型超新星[53][54][55]。創造蟹狀星雲的超新星爆炸被認為是電子俘獲型超新星的最佳候選者,而2021年的論文更可能證明這是正確的[54][55]

研究蟹狀星雲遇到的一個重大問題是星雲和脈衝星的總質量明顯比推測的前身星質量小。關於那些消失的質量的謎團至今仍未解開[28]。首先通過它發出的總光度估算星雲的質量,然後計算所需質量,可以得出星雲的溫度密度。質量的區間估計是太陽質量的1–5倍之間,而一般研究者認為太陽質量的2–3倍是合適的估計值[51]。此外,中子星的質量估計為1.4至2倍太陽質量。

解釋蟹狀星雲消失質量的主要理論是前身星的一部分物質在超新星爆發之前就由星風帶走了,這種現象在沃爾夫–拉葉星中是很常見的。然而,這會在星雲外形成一個殼層。儘管天文學試圖使用各種不同的波長來探測殼層,但至今還沒有任何發現[56]

太陽系天體掩星[編輯]

2003年土衛六掩蟹狀星雲

蟹狀星雲所在位置偏離地球繞太陽運轉的黃道平面大約1.5°,這意味月球甚至其他行星可能蟹狀星雲。儘管太陽不會掩蔽此星雲,但它的日冕會在星雲之前經過。這些凌星和掩星可用於同時分析星雲和通過它的天體,因為凌星或掩星發生時地球接收到的蟹狀星雲的輻射會發生變化。

月球掩蟹狀星雲的現象已用於繪製星雲的X射線發射光譜。在發射X射線觀測衛星(比如錢德拉X射線天文台)之前,X射線觀測的角解析度普遍較低。但是月球從星雲前經過的時候,它的位置可以計算地非常精確,相當於彌補了解析度不足的缺陷,因此星雲的亮度變化就可以用於製作X射線發射光譜[57]。人們首次從蟹狀星雲觀測到X射線時,就是運用月球的掩星來確定波源的確切位置[43]

太陽的日冕每年六月從蟹狀星雲前經過。此時收到的蟹狀星雲的無線電波可用於分析日冕的密度和結構。早期觀測認為日冕的延伸距離遠比以前的估計要大,而後來的觀測發現日冕密度會發生巨大的變化[6]

土星掩蟹狀星雲是很罕見的,最近一次是2003年,而更前的一次在1296年,下次則要到2267年。天文學家運用錢德拉X射線天文台在土星掩星雲時觀測它的衛星土衛六,並發現土衛六的X射線暗斑比它的固體表面更大,因為它的大氣層也能吸收X射線。這些觀測表明土衛六的大氣層厚度大約是880千米[7]。土星的掩星沒有被觀測到,因為錢德拉X射線天文台當時正在經過范艾倫輻射帶

參見[編輯]

注釋[編輯]

  1. ^ 1969年末由西德尼·范登伯使用非常深的攝影板測量[3][58]
  2. ^ 視星等8.4 - 距離模數11.5 ± 0.5 = −3.1 ± 0.5
  3. ^ 直徑 = 距離 × tan( 直徑角 = 420″) = 4.1±1.0秒差距(或13±3光年)

參考資料[編輯]

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 SIMBAD Astronomical Database. Results for NGC 1952. [2006-12-25]. (原始內容存檔於2019-05-01). 
  2. ^ 2.0 2.1 Kaplan, D. L.; Chatterjee, S.; Gaensler, B. M.; Anderson, J. A Precise Proper Motion for the Crab Pulsar, and the Difficulty of Testing Spin‐Kick Alignment for Young Neutron Stars. The Astrophysical Journal. 2008-04-20, 677 (2): 1201–1215 [2021-04-28]. Bibcode:2008ApJ...677.1201K. ISSN 0004-637X. doi:10.1086/529026. (原始內容存檔於2021-04-30) (英語). 
  3. ^ 3.0 3.1 3.2 3.3 Trimble, Virginia Louise. The Distance to the Crab Nebula and NP 0532. Publications of the Astronomical Society of the Pacific. 1973, 85 (507): 579. Bibcode:1973PASP...85..579T. doi:10.1086/129507. 
  4. ^ 4.0 4.1 Carroll, Bradley W.; Ostlie, Dale A. An Introduction to Modern Astrophysics, Second Edition. [2012-01-20]. (原始內容存檔於2012-01-25). 
  5. ^ Chandra :: Photo Album :: Crab Nebula :: 24 Oct 06. chandra.harvard.edu. [2021-04-28]. (原始內容存檔於2021-04-28). 
  6. ^ 6.0 6.1 Erickson, W. C. The Radio-Wave Scattering Properties of the Solar Corona. Astrophysical Journal. 1964, 139: 1290. Bibcode:1964ApJ...139.1290E. doi:10.1086/147865. 
  7. ^ 7.0 7.1 7.2 Mori, K.; Tsunemi, H.; Katayama, H.; Burrows, D. N.; Garmire, G. P.; Metzger, A. E. An X-Ray Measurement of Titan's Atmospheric Extent from Its Transit of the Crab Nebula. Astrophysical Journal. 2004, 607 (2): P1065–1069. Bibcode:2004ApJ...607.1065M. arXiv:astro-ph/0403283可免費查閱. doi:10.1086/383521.  莫里等人使用的錢德拉X射線天文台拍攝的照片可以在這裡看到:[1]頁面存檔備份,存於網際網路檔案館)。
  8. ^ Sollerman, J.; Kozma, C.; Lundqvist, P. Why did Supernova 1054 shine at late times?. Astronomy & Astrophysics. 2001-01-XX, 366 (1): 197–201. ISSN 0004-6361. doi:10.1051/0004-6361:20000211. 
  9. ^ Hankins, T. H.; Kern, J. S.; Weatherall, J. C.; Eilek, J. A. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature. 2003-03-XX, 422 (6928): 141–143 [2021-04-28]. ISSN 0028-0836. doi:10.1038/nature01477. (原始內容存檔於2021-05-07) (英語). 
  10. ^ 李燾,《續資治通鑑長編》(北京:中華書局,2004二版),卷176,頁4263:「己丑,客星出天關之東南可數寸。嘉祐元年三月乃沒。
  11. ^ 宋史·天文志》:「宋至和元年五月己丑,客星出天關東南可數寸,歲餘稍末。」
  12. ^ 《宋史·仁宗本紀》:「嘉祐元年三月辛未,司天監言:自至和元年五月,客星晨出東方,守天關,至是沒。」
  13. ^ 宋會要》:「嘉佑元年三月,司天監言:『客星沒,客去之兆也』。初,至和元年五月,晨出東方,守天關。晝如太白,芒角四出,色赤白,凡見二十三日。」
  14. ^ BRECHER, KENNETH; LIEBER, ELINOR, LIEBER, ALFRED E. A Near-Eastern sighting of the supernova explosion of 1054. Nature. 1978-06-28, 273 (5665): P728–730. doi:10.1038/273728a0. 
  15. ^ Brecher, K., Lieber, E., & Lieber, A. E. Report of a Near Eastern Sighting of the Crab Supernova Explosion. Bulletin of the American Astronomical Society. 1978年3月, 10: P424 [2012-02-25]. (原始內容存檔於2021-08-06). 
  16. ^ Glyn Jones, K. The Search for the Nebulae. Journal of the History of Astronomy. 1976, 7: P67. Bibcode:1976JHA.....7...67B. 
  17. ^ Rossi, B.B. The Crab Nebula ancient history and recent discoveries. NASA. NTRS. [October 1, 1969]. (原始內容存檔於2021-05-02). 
  18. ^ Lundmark, K. Suspected New Stars Recorded in Old Chronicles and Among Recent Meridian Observations. Publications of the Astronomical Society of the Pacific. 1921, 33: P225. Bibcode:1921PASP...33..225L. doi:10.1086/123101. 
  19. ^ 19.0 19.1 Mayall, N.U. The Crab Nebula, a Probable Supernova. Astronomical Society of the Pacific Leaflets. 1939, 3: P145. Bibcode:1939ASPL....3..145M. 
  20. ^ Collins II, George W.; Claspy, William P.; Martin, John C. A Reinterpretation of Historical References to the Supernova of a.d. 1054. Publications of the Astronomical Society of the Pacific. 1999-07-XX, 111 (761): 871–880 [2021-04-28]. ISSN 0004-6280. arXiv:astro-ph/9904285可免費查閱. doi:10.1086/316401. (原始內容存檔於2021-04-08) (英語). 
  21. ^ Hester, J. Jeff. The Crab Nebula: An Astrophysical Chimera. Annual Review of Astronomy and Astrophysics. 2008-09-XX, 46 (1): 127–155 [2021-04-28]. Bibcode:2008ARA&A..46..127H. ISSN 0066-4146. doi:10.1146/annurev.astro.45.051806.110608. (原始內容存檔於2021-04-30) (英語). 
  22. ^ Fesen, R. A.; Kirshner, R. P. The Crab Nebula. I - Spectrophotometry of the filaments. The Astrophysical Journal. 1982-07-XX, 258: 1 [2021-04-28]. Bibcode:1982ApJ...258....1F. ISSN 0004-637X. doi:10.1086/160043. (原始內容存檔於2019-09-10) (英語). 
  23. ^ Bietenholz, M. F.; Kronberg, P. P.; Hogg, D. E.; Wilson, A. S. The expansion of the Crab Nebula. The Astrophysical Journal. 1991-06-XX, 373: L59 [2021-04-28]. Bibcode:1991ApJ...373L..59B. ISSN 0004-637X. doi:10.1086/186051. (原始內容存檔於2019-06-03) (英語). 
  24. ^ Animation showing expansion from 1973 to 2001. Astronomy Picture of the Day. NASA. [2010-03-20]. (原始內容存檔於2021-03-29). 
  25. ^ Trimble, Virginia Louise. Motions and Structure of the Filamentary Envelope of the Crab Nebula. Astronomical Journal. 1968, 73: 535. Bibcode:1968AJ.....73..535T. doi:10.1086/110658. 
  26. ^ Bejger, M.; Haensel, P. Accelerated expansion of the Crab Nebula and evaluation of its neutron-star parameters. Astronomy and Astrophysics. 2003, 405 (2): 747–751. Bibcode:2003A&A...405..747B. arXiv:astro-ph/0301071可免費查閱. doi:10.1051/0004-6361:20030642. 
  27. ^ Green, D. A.; Tuffs, R. J.; Popescu, C. C. Far-infrared and submillimetre observations of the Crab nebula. Monthly Notices of the Royal Astronomical Society. 2004, 355 (4): 1315–1326. Bibcode:2004MNRAS.355.1315G. arXiv:astro-ph/0409469可免費查閱. doi:10.1111/j.1365-2966.2004.08414.x. 
  28. ^ 28.0 28.1 Fesen, Robert A.; Shull, J. Michael; Hurford, Alan P. An Optical Study of the Circumstellar Environment Around the Crab Nebula. Astronomical Journal. 1997, 113: 354–363. Bibcode:1997AJ....113..354F. doi:10.1086/118258. 
  29. ^ Shklovskii, Iosif. On the Nature of the Crab Nebula’s Optical Emission. Doklady Akademii Nauk SSSR. 1953, 90: 983. Bibcode:1957SvA.....1..690S. 
  30. ^ Burbidge, G. R. Particle Energies and Magnetic Energy in the Crab Nebula.. Astrophysical Journal. 1958年1月, 127: P48. 
  31. ^ Burn B.J. A synchrotron model for the continuum spectrum of the Crab Nebula. Monthly Notices of the Royal Astronomical Society. 1973, 165: P421. Bibcode:1973MNRAS.165..421B. 
  32. ^ 彬彬. 蟹状星云伽马射线异常爆发 辐射强度提高两三倍. 科學網. 2010-12-13 [2010-12-15]. (原始內容存檔於2019-06-08). 
  33. ^ Ron Cowen, Science News. Crab Nebula’s Violent Outbursts Shock Astronomers. WIRED SCIENCE. 2010-12-08 [2012-01-24]. (原始內容存檔於2013-07-02). 
  34. ^ Rees, M. J.; Gunn, J. E. The origin of the magnetic field and relativistic particles in the Crab Nebula. Monthly Notices of the Royal Astronomical Society. 1974, 167: P1–12. Bibcode:1974MNRAS.167....1R. 
  35. ^ 蟹状星云中有宇宙粒子加速器. 科學網. 2008-08-29 [2012-01-25]. (原始內容存檔於2016-03-05). 
  36. ^ Dean, A. J.; Clark, D. J., Stephen, J. B., McBride, V. A., Bassani, L., Bazzano, A., Bird, A. J., Hill, A. B., Shaw, S. E., Ubertini, P. Polarized Gamma-Ray Emission from the Crab. Science. 2008-08-28, 321 (5893): 1183–1185. doi:10.1126/science.1149056. 
  37. ^ Weisskopf, Martin C.; Hester, J. Jeff, Tennant, Allyn F., Elsner, Ronald F., Schulz, Norbert S., Marshall, Herman L., Karovska, Margarita, Nichols, Joy S., Swartz, Douglas A., Kolodziejczak, Jeffery J., O』Dell, Stephen L. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula. The Astrophysical Journal. 2000-06-19, 536 (2): L81–L84. doi:10.1086/312733. 
  38. ^ 李旻、汪珍如. 蟹状星云Chandra卫星观测数据的X射线谱分析. 南京大學學報(自然科學). 2005年1月, 41 (1): P77–83. 
  39. ^ Slane, Ed. By Patrick O,. Neutron stars in supernova remnants : prooceedings of a workshop held at Boston, Mass., USA 14-17 August 2001 1st ed. San Francisco, Calif.: Astronomical Soc. of the Pacific. 2002. ISBN 1-58381-111-7. 
  40. ^ 40.0 40.1 MacAlpine, Gordon M.; Ecklund, Tait C.; Lester, William R.; Vanderveer, Steven J.; Strolger, Louis-Gregory. A Spectroscopic Study of Nuclear Processing and the Production of Anomalously Strong Lines in the Crab Nebula. Astronomical Journal. 2007, 133 (1): 81–88. Bibcode:2007AJ....133...81M. arXiv:astro-ph/0609803可免費查閱. doi:10.1086/509504. 
  41. ^ Minkowski, R. The Crab Nebula. Astrophysical Journal. 1942, 96: 199. Bibcode:1942ApJ....96..199M. doi:10.1086/144447. 
  42. ^ Bolton, J. G.; Stanley, G. J.; Slee, O. B. Positions of three discrete sources of Galactic radio frequency radiation. Nature. 1949, 164 (4159): P101–102. Bibcode:1949Natur.164..101B. doi:10.1038/164101b0. 
  43. ^ 43.0 43.1 Bowyer, S.; Byram, E. T.; Chubb, T. A.; Friedman, H. Lunar Occultation of X-ray Emission from the Crab Nebula. Science. 1964, 146 (3646): P912–917. Bibcode:1964Sci...146..912B. PMID 17777056. doi:10.1126/science.146.3646.912. 
  44. ^ Haymes, R. C.; Ellis, D. V.; Fishman, G. J.; Kurfess, J. D.; Tucker, W. H. Observation of Gamma Radiation from the Crab Nebula. Astrophysical Journal Letters. 1968, 151: PL9. Bibcode:1968ApJ...151L...9H. doi:10.1086/180129. 
  45. ^ Del Puerto, C. Pulsars In The Headlines. EAS Publications Series. 2005, 16: P115–119. doi:10.1051/eas:2005070. 
  46. ^ Bejger, M.; Haensel, P. Moments of inertia for neutron and strange stars: Limits derived for the Crab pulsar. Astronomy and Astrophysics. 2002, 396 (3): P917–921. Bibcode:2002A&A...396..917B. arXiv:astro-ph/0209151可免費查閱. doi:10.1051/0004-6361:20021241. 
  47. ^ Harnden, F. R.; Seward, F. D. Einstein observations of the Crab nebula pulsar. Astrophysical Journal. 1984, 283: P279–285. Bibcode:1984ApJ...283..279H. doi:10.1086/162304. 
  48. ^ Kaufmann, W. J. Universe 4th. W. H. Freeman and Company. 1996: 428. ISBN 0-7167-2379-4. 
  49. ^ Hester, J. J.; Scowen, P. A.; Sankrit, R.; Michel, F. C.; Graham, J. R.; Watson, A.; Gallagher, J. S. The Extremely Dynamic Structure of the Inner Crab Nebula. Bulletin of the American Astronomical Society. 1996, 28 (2): 950. Bibcode:1996BAAS...28..950H. 
  50. ^ Nomoto, K. Evolutionary models of the Crab Nebula's progenitor. The Crab Nebula and related supernova remnants; Proceedings of the Workshop. Cambridge University Press. 1985: 97–113. Bibcode:1985cnrs.work...97N. 
  51. ^ 51.0 51.1 Davidson, K.; Fesen, R. A. Recent developments concerning the Crab Nebula. Annual Review of Astronomy and Astrophysics. 1985, 23 (507): 119–146. Bibcode:1985ARA&A..23..119D. doi:10.1146/annurev.aa.23.090185.001003. 
  52. ^ Tominaga, N.; et al. Supernova explosions of super-asymptotic giant branch stars: multicolor light curves of electron-capture supernovae. The Astrophysical Journal Letters. 2013, 771 (1): L12. Bibcode:2013ApJ...771L..12T. S2CID 118860608. arXiv:1305.6813可免費查閱. doi:10.1088/2041-8205/771/1/L12. 
  53. ^ Hiramatsu D, Howell D, Van S, et al. The electron-capture origin of supernova 2018zd. Nat Astron. 28 June 2021, 5 (9): 903–910 [2022-01-20]. Bibcode:2021NatAs...5..903H. S2CID 226246044. arXiv:2011.02176可免費查閱. doi:10.1038/s41550-021-01384-2. (原始內容存檔於2021-06-30). 
  54. ^ 54.0 54.1 New, Third Type Of Supernova Observed. W. M. Keck Observatory. 28 June 2021 [2022-01-20]. (原始內容存檔於2021-06-29). 
  55. ^ 55.0 55.1 Astronomers discover new type of supernova. RTE News. PA. 28 June 2021 [1 July 2021]. (原始內容存檔於2021-06-30). 
  56. ^ Frail, D. A.; Kassim, N. E.; Cornwell, T. J.; Goss, W. M. Does the Crab Have a Shell?. Astrophysical Journal Letters. 1995, 454 (2): PL129–L132. Bibcode:1995ApJ...454L.129F. arXiv:astro-ph/9509135可免費查閱. doi:10.1086/309794. 
  57. ^ Palmieri, T. M.; Seward, F. D.; Toor, A.; van Flandern, T. C. Spatial distribution of X-rays in the Crab Nebula. Astrophysical Journal. 1975, 202: P494–497. Bibcode:1975ApJ...202..494P. doi:10.1086/153998. 
  58. ^ van den Bergh, Sidney. A Jetlike Structure Associated with the Crab Nebula. The Astrophysical Journal. 1970-04-XX, 160: L27 [2021-04-28]. Bibcode:1970ApJ...160L..27V. ISSN 0004-637X. doi:10.1086/180516. (原始內容存檔於2019-06-13) (英語). 

外部連結[編輯]

天球赤道座標星圖 5h 34m 31.97s,+22° 00′ 52.1″