長壽命分裂產物

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

長壽命分裂產物一般指由核分裂反應產生的、半衰期超過20萬年的放射性物質。[1]這並非精確的科學定義,比如有人把某些半衰期在20年至100年間的分裂產物也稱作長壽命分裂產物。[2]另外的人則主張把這些半衰期在20年-100年間的分裂產物稱作中等壽命分裂產物[3]

核廢料放射性的來源[編輯]

核廢料中含有分裂產物,還含有錒系元素,以及中子活化後的放射性元素(又稱為激活產物)。[1]

短壽命分裂產物[編輯]

中等壽命分裂產物
項:
單位:
t½
a
產額
%
Q*
KeV
βγ
*
155Eu 4.76 .0803 252 βγ
85Kr 10.76 .2180 687 βγ
113mCd 14.1 .0008 316 β
90Sr 28.9 4.505 2826 β
137Cs 30.23 6.337 1176 βγ
121mSn 43.9 .00005 390 βγ
151Sm 90 .5314 77 β

剛出堆的用過燃料在短期內具有極強的放射性,這種放射性大多來源於分裂產物中的短壽命分裂產物,比如碘-131(半衰期=8.0197天)和鋇-140(半衰期=12.7523天)。四個月之後,上述兩種核素的強放射性基本消失,取而代之的是鈰-141、鋯-95、鈮-95和鍶-89。兩到三年之後,放射性主要來源於鈰-144、鐠-144、釕-106、銠-106和鉕-147。[1]

反應爐或者用過燃料發生核洩漏時,只會有部分核素外洩。這種洩漏的同位素特徵大氣層核爆炸完全不同。[4]

中等壽命分裂產物[編輯]

用過燃料經過幾年的冷卻之後,大部分放射性源自銫-137鍶-90。二者在分裂反應中的產額大概都是6%,半衰期都在30年左右。其他半衰期在30年左右的核素要麽反應產額低,要麽在反應爐中經中子俘獲而被轉變成其他核素(比如釤-151、銪-155和鎘-113m),因此對用過燃料的放射性貢獻不大。在幾年到幾百年的時間裏,用過燃料的放射性基本可以認爲就是銫-137和鍶-90的放射性,可以通過二者指數衰變的疊加來模擬。它們被稱為中等壽命分裂產物。[1][3]

氪-85(半衰期=10.76年)也算是中等壽命分裂產物。但它的情形和銫-137和鍶-90有所不同。氪-85是一種惰性氣體,不會在大氣圈岩石圈或者水圈富集。因此在現有再處理流程中,氪-85可以直接排放到大氣中。[5]在美國和其他一些國家,用過燃料在再處理之前一般要經過幾十年的冷卻。到了再處理的時候,大部分氪-85已經經衰變而消失。

錒系元素[編輯]

錒系元素和分裂產物的半衰期
衰變鏈分類的錒系元素[6] 半衰期範圍 分裂產額英語Fission product yield分類的分裂產物[7]
4n 4n + 1 4n + 2 4n + 3 4.5–7% 0.04–1.25% <0.001%
228Ra 4~10年 155Eu þ
244Cm 241Pu ƒ 250Cf 227Ac 10~29年 90Sr 85Kr 113mCd þ
232ƒ 238Pu 243Cm ƒ 29~100年 137Cs 151Sm þ 121mSn
248Bk[8] 249Cf ƒ 242mAm ƒ 100~400年 中等壽命分裂產物

沒有半衰期為
100年至21萬年
的分裂產物

長壽命分裂產物
241Am 251Cf ƒ[9] 400~1000年
226Ra 247Bk 1000~2000年
240Pu 229Th 246Cm 243Am 2000~8000年
245Cm ƒ 250Cm 239Pu ƒ 8000~3萬年
230Th 231Pa 3~10萬年
236Np ƒ 233ƒ 234U 10~30萬年 99Tc 126Sn
248Cm 242Pu 30~140萬年 135Cs 79Se
237Np 140~700萬年 93Zr 107Pd
236U 247Cm ƒ 700~3000萬年 129I
244Pu 3000萬~1億年 也沒有半衰期超過
2000萬年的分裂產物[10]
232Th 238U 235ƒ 1~150億年

銫-137鍶-90大部分衰變後,用過燃料的放射性主要來源於錒系元素,最重要的有鈽-239鈽-240鎇-241鎇-243鋦-245鋦-246[1]這些元素可以經再處理回收,用作分裂燃料。分離這些元素後,在1,000-100,000年左右用過燃料的放射性會大大降低。鈽-239可以直接用於現有的熱中子反應爐。量比較小的鎇-241和鈽-242則可以在快中子反應爐中轉化成其他核素。

長壽命分裂產物[編輯]

100,000年以後,分裂產物將以七種核素爲主,兼有少量鎿-237和鈽-242。[1]這七種核素的半衰期在20萬年到1600萬年之間。主要產物鍀-99、鋯-93和銫-135的產額在6%左右,其衰變能在100-300千電子伏特之間,一部分表現為β放射線,另一部分則以無害的中微子形式釋放。錒系元素以α衰變爲主,衰變能在4-5兆電子伏特。

  • 鍀-99是長壽分裂產物中產額較高的,為6%左右。它釋放出低到中等能量的電子,沒有γ放射線。因此只要不攝入體內,對生物不構成太大的風險。但鍀可以被氧化為高鍀酸鹽(TcO4-),溶解度好,被廣泛用於核醫學[11][12]鍀-99在環境中遷移性比較大。據説已有數以噸計的鍀-99因人類活動進入環境。[13]
  • 錫-126衰變能較大,而且是七種長壽分裂產物中唯一能釋放高能γ射綫的核素。但是這種核素產額很低。如果反應爐以鈾-235為燃料,在用過燃料中,每單位時間錫-126釋放出的能量是鍀-99的5%;如果反應爐以鈾-235(65%)和鈽-239(35%)為燃料,在用過燃料中,每單位時間錫-126釋放出的能量是鍀-99的20%。錫化學性質比較惰性,不易在環境中遷移,因此對人類健康影響不大。
  • 硒-79的產額很低,放射線也很弱。每單位時間硒-79釋放出的能量是鍀-99的0.2%。
  • 鋯-93的產額在6%左右,其衰變比鍀-99慢7.5倍,衰變能只是鍀-99的30%。因此起始時用過燃料中的鋯-93釋放的能量只是鍀-99的4%。但其能量貢獻會隨著時間而增加。鋯-93產生極弱的γ放射線,在環境中也相對惰性。
  • 銫-135的前體氙-135產額在6%左右,但吸收熱中子的能力很強。因此大部分氙-135嬗變為穩定同位素氙-136,只有少部分衰變為銫-135。假定90%的氙-135發生嬗變,起始時用過燃料中的銫-135釋放的能量只是鍀-99的1%。銫-135是七種長壽分裂產物中唯一一種鹼金屬,具有強電正性。相比之下,主要的中等壽命分裂產物和除鎿之外的錒系元素都是鹼性。銫-135具有揮發性,可以用高溫揮發的辦法分離。[14]
長壽命分裂產物
項:
單位:
t½
Ma
產額
%
Q*
KeV
βγ
*
99Tc 0.211 6.1385 294 β
126Sn 0.230 0.1084 4050 βγ
79Se 0.295 0.0447 151 β
93Zr 1.53 5.4575 91 βγ
135Cs 2.3  6.9110 269 β
107Pd 6.5  1.2499 33 β
129I 15.7  0.8410 194 βγ
  • 鈀-107的半衰期很長,產額在1%左右。如果以鈽-239為燃料,鈀-107的產率比用鈾-235為燃料時要高。其放射性很弱。起始時用過燃料中的鋯-93釋放的能量只是鍀-99的萬分之一。鈀屬貴金屬,化學性質不活潑。
  • 碘-129半衰期在七種長壽分裂產物中最長:1570萬年。它放射性也很弱,起始時用過燃料中的鋯-93釋放的能量只是鍀-99的1%。但放射性碘卻對生物構成重大的核威脅,因爲碘是許多生物必須的微量元素之一。碘-131在碘同位素中放射性最強,危害也最大。

七種長壽分裂產物的放射性隨時間的變化[編輯]

如果反應爐以鈾-235為燃料,在用過燃料中,每單位時間其它六種核素釋放出的縂能量是鍀-99的10%;如果反應爐以鈾-235(65%)和鈽-239(35%)為燃料,在用過燃料中,每單位時間其它六種核素釋放出的縂能量是鍀-99的25%。

用過燃料冷卻1000年後,中等壽命分裂產物銫-137鍶-90的放射性降低到和長壽分裂產物持平的水平。如果錒系元素沒有分離的話,將比中等壽命分裂產物和長壽分裂產物的放射性更強。

用過燃料冷卻100萬年後,鍀-99的放射性將首次低於鋯-93。300萬年後,鋯-93的衰變能將低於碘-129

因爲鍀-99和碘-129對生物危害較大,但同時有較大的中子反應截面,有人正在考慮用核嬗變的方式將它們轉化為危害較小的核素以除去。[15]

參考資料[編輯]

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Nuclear Wastes: Technologies for Separations and Transmutation. National Academies Press. 1996 [2013-03-17]. ISBN 978-0-309-05226-9. (原始內容存檔於2014-07-05). 
  2. ^ Yang, W. S.; Kim, Y.; Hill, R. N.; Taiwo, T. A.; Khalil, H. S. Long-Lived Fission Product Transmutation Studies. Nuclear Science and Engineering. 2004, 146: 291–318. 
  3. ^ 3.0 3.1 The Nuclear Alchemy Gamble: An Assessment of Transmutation as a Nuclear Waste Management Strategy. [2013-03-17]. (原始內容存檔於2011-05-30). 
  4. ^ Howard A. Hawthorne, Editor. COMPILATION OF LOCAL FALLOUT DATA FROM TEST DETONATIONS 1945-1962 - EXTRACTED FROM DASA 1251 - Volume II - Oceanic U.S. Tests (PDF). General Electric Company. May 1979. (原始內容 (PDF)存檔於2008-04-10). 
  5. ^ Krypton, Human Health Fact Sheet, August 2005 (PDF). (原始內容 (PDF)存檔於2009-12-20). 
  6. ^ 雖然不是錒系元素,但它緊接在錒系元素錒之前,且有半衰期超過4年,可被列入此表中的同位素,因此鐳也被列入其中。
  7. ^ 此表列出的是熱中子轟擊235U的分裂產額。
  8. ^ Milsted, J.; Friedman, A. M.; Stevens, C. M. The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248. Nuclear Physics. 1965, 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4. 
  9. ^ 是所有半衰期超過四年的同位素中最重的
  10. ^ 半衰期遠長於232Th,基本可視為穩定的衰變產物被排除在外,如半衰期8×1015年的113Cd。
  11. ^ Ryo, U.Y.; Vaidya, P.V.; Schneider, A.B.; Bekerman, C; Pinsky, S.M. Thyroid imaging agents: a comparison of I-123 and Tc-99m pertechnetate. Radiology. 1983, 148 (3): 819–822. PMID 6308711. 
  12. ^ Nuclear Imaging of Meckel's Diverticulum: A Pictorial Essay of Pitfalls 網際網路檔案館存檔,存檔日期2012-01-17. S. Huynh, M.D., R. Amin, M.D., B. Barron, M.D., R. Dhekne, M.D., P. Nikolaidis, M.D., L. Lamki, M.D.. University of Texas Houston Medical School and Memorial Hermann - Texas Medical Center (TMC), St. Luke's Episcopal Hospital and Texas Children Hospital, Houston, Texas. Last Modified September 5, 2007
  13. ^ Dowdall, M.; Gerland, S.; Karcher, M.; Gwynn, J. P.; Rudjord, A.L. Optimisation of sampling for the temporal monitoring of technetium-99 in the Arctic marine environment.. Journal of Environmental Radioactivity. 2005, 84: 111–130. 
  14. ^ Removal of Cesium From a High-Level Calcined Waste by High Temperature Volatilization (PDF). osti.gov. [2013-03-19]. (原始內容存檔 (PDF)於2019-07-10). 
  15. ^ Processing of Used Nuclear Fuel. World Nuclear Association. [2013-03-18]. (原始內容存檔於2016-01-23).