“疟疾”:修订间差异
(→生活史) |
(→生活史) |
||
第81行: | 第81行: | ||
除了蚊蟲感染之外,瘧原蟲也有可能藉由[[輸血]]感染,但此情況相當罕見。<ref name="Owusu-Ofori 2010"/>2006年,[[台北榮民總醫院]]發生了一起嚴重的[[院內感染]]案例,造成4名病患感染惡性瘧疾死亡,即因輸血方式不當。<ref name="Taipei">{{cite doi|10.1086/501557}}</ref> |
除了蚊蟲感染之外,瘧原蟲也有可能藉由[[輸血]]感染,但此情況相當罕見。<ref name="Owusu-Ofori 2010"/>2006年,[[台北榮民總醫院]]發生了一起嚴重的[[院內感染]]案例,造成4名病患感染惡性瘧疾死亡,即因輸血方式不當。<ref name="Taipei">{{cite doi|10.1086/501557}}</ref> |
||
{{TransH}} |
|||
===Recurrent malaria=== |
|||
Symptoms of malaria can recur after varying symptom-free periods. Depending upon the cause, recurrence can be classified as either [[recrudescence]], [[relapse]], or reinfection. Recrudescence is when symptoms return after a symptom-free period. It is caused by parasites surviving in the blood as a result of inadequate or ineffective treatment.<ref>{{harvnb|WHO|2010|p=vi}}</ref> Relapse is when symptoms reappear after the parasites have been eliminated from blood but persist as dormant hypnozoites in liver cells. Relapse commonly occurs between 8–24 weeks and is commonly seen with ''P. vivax'' and ''P. ovale'' infections.<ref name="Nadjm 2012"/> ''P. vivax'' malaria cases in [[temperate]] areas often involve [[overwintering]] by hypnozoites, with relapses beginning the year after the mosquito bite.<ref name="White 2011"/> Reinfection means the parasite that caused the past infection was eliminated from the body but a new parasite was introduced. Reinfection cannot readily be distinguished from recrudescence, although recurrence of infection within two weeks of treatment for the initial infection is typically attributed to treatment failure.<ref>{{harvnb|WHO|2010|p=17}}</ref> People may develop some [[premunity|immunity]] when exposed to frequent infections.<ref name="Tran 2012"/> |
|||
==Pathophysiology== |
|||
{{further2|[[Plasmodium falciparum biology|''Plasmodium falciparum'' biology]]}} |
|||
[[File:Maternal malaria placenta - cropped - very high mag.jpg|thumb|right|[[Micrograph]] of a [[placenta]] from a [[stillbirth]] due to maternal malaria. [[H&E stain]]. Red blood cells are anuclear; blue/black staining in bright red structures (red blood cells) indicate foreign nuclei from the parasites.]] |
|||
Malaria infection develops via two phases: one that involves the [[liver]] (exoerythrocytic phase), and one that involves red blood cells, or [[erythrocyte]]s (erythrocytic phase). When an infected mosquito pierces a person's skin to take a blood meal, sporozoites in the mosquito's saliva enter the bloodstream and migrate to the liver where they infect hepatocytes, multiplying asexually and asymptomatically for a period of 8–30 days.<ref name="Bledsoe 2005"/> |
|||
After a potential dormant period in the liver, these organisms [[cellular differentiation|differentiate]] to yield thousands of merozoites, which, following rupture of their host cells, escape into the blood and infect red blood cells to begin the erythrocytic stage of the life cycle.<ref name="Bledsoe 2005"/> The parasite escapes from the liver undetected by wrapping itself in the [[cell membrane]] of the infected host liver cell.<ref name="Vaughan 2008"/> |
|||
Within the red blood cells, the parasites multiply further, again asexually, periodically breaking out of their host cells to invade fresh red blood cells. Several such amplification cycles occur. Thus, classical descriptions of waves of fever arise from simultaneous waves of merozoites escaping and infecting red blood cells.<ref name="Bledsoe 2005"/> |
|||
Some ''P. vivax'' sporozoites do not immediately develop into exoerythrocytic-phase merozoites, but instead produce hypnozoites that remain dormant for periods ranging from several months (7–10 months is typical) to several years. After a period of dormancy, they reactivate and produce merozoites. Hypnozoites are responsible for long incubation and late relapses in ''P. vivax'' infections,<ref name="White 2011"/> although their existence in ''P. ovale'' is uncertain.<ref name="Richter 2010"/> |
|||
The parasite is relatively protected from attack by the body's [[immune system]] because for most of its human life cycle it resides within the liver and blood cells and is relatively invisible to immune surveillance. However, circulating infected blood cells are destroyed in the [[spleen]]. To avoid this fate, the ''P. falciparum'' parasite displays adhesive [[protein]]s on the surface of the infected blood cells, causing the blood cells to stick to the walls of small blood vessels, thereby sequestering the parasite from passage through the general circulation and the spleen.<ref name="Tilley 2011"/> The blockage of the microvasculature causes symptoms such as in placental malaria.<ref name="Mens 2010"/> Sequestered red blood cells can breach the [[blood–brain barrier]] and cause cerebral malaria.<ref name="Rénia 2012"/> |
|||
===Genetic resistance=== |
|||
{{Main|Genetic resistance to malaria}} |
|||
According to a 2005 review, due to the high levels of [[death|mortality]] and [[morbidity]] caused by malaria—especially the ''P. falciparum'' species—it has placed the greatest [[selection|selective pressure]] on the [[human genome]] in recent history. Several genetic factors provide some resistance to it including [[sickle cell trait]], [[thalassaemia]] traits, [[glucose-6-phosphate dehydrogenase deficiency]], and the absence of [[Duffy antigen]]s on red blood cells.<ref name="Kwiatkowski 2005"/><ref name="Hedrick 2011"/> |
|||
The impact of sickle cell trait on malaria immunity illustrates some evolutionary trade-offs that have occurred because of endemic malaria. Sickle cell trait causes a defect in the hemoglobin molecule in the blood. Instead of retaining the biconcave shape of a normal red blood cell, the modified [[hemoglobin S|hemoglobin S]] molecule causes the cell to sickle or distort into a curved shape. Due to the sickle shape, the molecule is not as effective in taking or releasing oxygen. Infection causes red cells to sickle more, and so they are removed from circulation sooner. This reduces the frequency with which malaria parasites complete their life cycle in the cell. Individuals who are [[homozygous]] (with two copies of the abnormal hemoglobin beta [[allele]]) have [[sickle-cell anaemia]], while those who are heterozygous (with one abnormal allele and one normal allele) experience resistance to malaria. Although the shorter life expectancy for those with the homozygous condition would not sustain the trait's survival, the trait is preserved because of the [[heterozygote advantage|benefits]] provided by the heterozygous form.<ref name="Hedrick 2011"/><ref name="Weatherall 2008"/> |
|||
===Liver dysfunction=== |
|||
Liver dysfunction as a result of malaria is uncommon and usually only occurs in those with other liver condition such as [[viral hepatitis]] or [[chronic liver disease]]. The syndrome is sometimes called ''malarial hepatitis''.<ref name="Bhalla 2006"/> While it has been considered a rare occurrence, malarial hepatopathy has seen an increase, particularly in Southeast Asia and India. Liver compromise in people with malaria correlates with a greater likelihood of complications and death.<ref name="Bhalla 2006"/> |
|||
==Diagnosis== |
|||
{{Main|Diagnosis of malaria}} |
|||
[[File:5901 lores.jpg|thumb|The blood film is the [[gold standard (test)|gold standard]] for malaria diagnosis.]] |
|||
[[File:Plasmodium.jpg|thumb|Ring-forms and [[gametocyte]]s of ''Plasmodium falciparum'' in human blood]] |
|||
Owing to the non-specific nature of the presentation of symptoms, diagnosis of malaria in non-endemic areas requires a high degree of suspicion, which might be elicited by any of the following: recent travel history, [[splenomegaly|enlarged spleen]], fever, [[thrombocytopenia|low number of platelets]] in the blood, and [[hyperbilirubinemia|higher-than-normal levels of bilirubin]] in the blood combined with a normal level of [[white blood cells]].<ref name="Nadjm 2012"/> |
|||
Malaria is usually confirmed by the microscopic examination of [[blood film]]s or by [[antigen]]-based [[Malaria antigen detection tests|rapid diagnostic tests]] (RDT).<ref name="Abba 2011"/><ref name="Kattenberg 2011"/> Microscopy is the most commonly used method to detect the malarial parasite—about 165 million blood films were examined for malaria in 2010.<ref name="Wilson 2012"/> Despite its widespread usage, diagnosis by microscopy suffers from two main drawbacks: many settings (especially rural) are not equipped to perform the test, and the accuracy of the results depends on both the skill of the person examining the blood film and the levels of the parasite in the blood. The [[Sensitivity and specificity|sensitivity]] of blood films ranges from 75–90% in optimum conditions, to as low as 50%. Commercially available RDTs are often more accurate than blood films at predicting the presence of malaria parasites, but they are widely variable in diagnostic sensitivity and specificity depending on manufacturer, and are unable to tell how many parasites are present.<ref name="Wilson 2012"/> |
|||
In regions where laboratory tests are readily available, malaria should be suspected, and tested for, in any unwell person who has been in an area where malaria is endemic. In areas that cannot afford laboratory diagnostic tests, it has become common to use only a history of fever as the indication to treat for malaria—thus the common teaching "fever equals malaria unless proven otherwise". A drawback of this practice is [[overdiagnosis]] of malaria and mismanagement of non-malarial fever, which wastes limited resources, erodes confidence in the health care system, and contributes to drug resistance.<ref name="Perkins 2008"/> Although [[polymerase chain reaction]]-based tests have been developed, they are not widely used in areas where malaria is common as of 2012, due to their complexity.<ref name="Nadjm 2012"/> |
|||
===Classification=== |
|||
Malaria is classified into either "severe" or "uncomplicated" by the [[World Health Organization]] (WHO).<ref name="Nadjm 2012"/> It is deemed severe when ''any'' of the following criteria are present, otherwise it is considered uncomplicated.<ref>{{harvnb|WHO|2010|p=35}}</ref> |
|||
* Decreased consciousness |
|||
* Significant weakness such that the person is unable to walk |
|||
* Inability to feed |
|||
* Two or more [[convulsions]] |
|||
* [[Low blood pressure]] (less than 70 [[mmHg]] in adults and 50 mmHg in children) |
|||
* [[respiratory distress|Breathing problems]] |
|||
* [[Circulatory shock]] |
|||
* [[Kidney failure]] or [[hemoglobin]] in the urine |
|||
* Bleeding problems, or hemoglobin less than 50 g/L (5 g/dL) |
|||
* [[Pulmonary oedema]] |
|||
* [[Blood glucose]] less than 2.2 mmol/L (40 mg/dL) |
|||
* [[Acidosis]] or [[lactic acid|lactate]] levels of greater than 5 mmol/L |
|||
* A parasite level in the blood of greater than 100,000 per [[microlitre]] (µL) in low-intensity transmission areas, or 250,000 per µL in high-intensity transmission areas |
|||
Cerebral malaria is defined as a severe ''P. falciparum''-malaria presenting with neurological symptoms, including coma (with a [[Glasgow coma scale]] less than 11, or a [[Blantyre coma scale]] greater than 3), or with a coma that lasts longer than 30 minutes after a seizure.<ref>{{harvnb|WHO|2010|p=v}}</ref> |
|||
==Prevention== |
|||
<!-- The list of methods seems to put the least cost-effective first. What's the reason for that? --> |
|||
[[File:Anopheles stephensi.jpeg|thumb|An ''[[Anopheles stephensi]]'' mosquito shortly after obtaining blood from a human (the droplet of blood is expelled as a surplus). This mosquito is a vector of malaria, and mosquito control is an effective way of reducing its incidence.]] |
|||
Methods used to prevent malaria include medications, mosquito elimination and the prevention of bites. There is no [[malaria vaccine|vaccine for malaria]]. The presence of malaria in an area requires a combination of high human population density, high anopheles mosquito population density and high rates of transmission from humans to mosquitoes and from mosquitoes to humans. If any of these is lowered sufficiently, the parasite will eventually disappear from that area, as happened in North America, Europe and parts of the Middle East. However, unless the parasite is eliminated from the whole world, it could become re-established if conditions revert to a combination that favours the parasite's reproduction. Furthermore, the cost per person of eliminating anopheles mosquitoes rises with decreasing population density, making it economically unfeasible in some areas.<ref name="whqlibdoc"/> |
|||
Prevention of malaria may be more cost-effective than treatment of the disease in the long run, but the [[capital cost|initial costs]] required are out of reach of many of the world's poorest people. There is a wide difference in the costs of control (i.e. maintenance of low endemicity) and elimination programs between countries. For example, in China—whose government in 2010 announced a strategy to pursue malaria elimination in the [[Chinese province]]s—the required investment is a small proportion of public expenditure on health. In contrast, a similar program in Tanzania would cost an estimated one-fifth of the public health budget.<ref name="Sabot 2010"/> |
|||
===Mosquito control=== |
|||
{{further2|[[Mosquito control]]}} |
|||
[[File:Mansprayingkeroseneoil.jpg|thumb|left|Man spraying kerosene oil in standing water, [[Panama Canal Zone]] 1912]] |
|||
[[Vector control]] refers to methods used to decrease malaria by reducing the levels of transmission by mosquitoes. For individual protection, the most effective [[insect repellent]]s are based on [[DEET]] or [[picaridin]].<ref name="Kajfasz 2009"/> Insecticide-treated [[mosquito net]]s (ITNs) and [[indoor residual spraying]] (IRS) have been shown to be highly effective in preventing malaria among children in areas where malaria is common.<ref name="Lengeler 2004"/><ref name="Pluess 2010"/> Prompt treatment of confirmed cases with artemisinin-based combination therapies (ACTs) may also reduce transmission.<ref>{{cite web|last=Palmer|first=J.|title=WHO gives indoor use of DDT a clean bill of health for controlling malaria|url=http://www.who.int/mediacentre/news/releases/2006/pr50/en/|publisher=WHO}}</ref> |
|||
[[File:Mosquitoes-Killedy-By-DDT-Lake-Victoria.JPG|thumb|right|Walls where indoor residual spraying of DDT has been applied. The mosquitoes remain on the wall until they fall down dead on the floor.]] |
|||
<!-- Bet nets --> |
|||
[[File:Mosquitonet149.jpg|thumb|A mosquito net in use.]] |
|||
Mosquito nets help keep mosquitoes away from people and reduce infection rates and transmission of malaria. Nets are not a perfect barrier and are often treated with an insecticide designed to kill the mosquito before it has time to find a way past the net. Insecticide-treated nets are estimated to be twice as effective as untreated nets and offer greater than 70% protection compared with no net.<ref name="Raghavendra 2011"/> Between 2000 and 2008, the use of ITNs saved the lives of an estimated 250,000 infants in Sub-Saharan Africa.<ref name="Howitt 2012"/> About 13% of households in Sub-Saharan countries own ITNs.<ref name="Miller 2007"/> In 2000, 1.7 million (1.8%) African children living in areas of the world where malaria is common were protected by an ITN. That number increased to 20.3 million (18.5%) African children using ITNs in 2007, leaving 89.6 million children unprotected.<ref name="Noor 2009"/> An increased percentage of African households (31%) are estimated to own at least one ITN in 2008. Most nets are impregnated with [[pyrethroid]]s, a class of insecticides with low [[toxicity]]. They are most effective when used from dusk to dawn.<ref>{{harvnb|Schlagenhauf-Lawlor|2008|pp=[http://books.google.com/books?id=54Dza0UHyngC&pg=PA215 215]}}</ref> It is recommended to hang a large "bed net" above the center of a bed and either tuck the edges under the mattress or make sure it is large enough such that it touches the ground.<ref>{{cite book|title=Instructions for treatment and use of insecticide-treated mosquito nets|date=2002|publisher=World Health Organization|page=34|url=http://whqlibdoc.who.int/hq/2002/WHO_CDS_RBM_2002.41.pdf|format=pdf}}</ref> |
|||
<!-- Indoor residual spraying --> |
|||
Indoor residual spraying is the spraying of insecticides on the walls inside a home. After feeding, many mosquitoes rest on a nearby surface while digesting the bloodmeal, so if the walls of houses have been coated with insecticides, the resting mosquitoes can be killed before they can bite another person and transfer the malaria parasite.<ref name="Enayati 2010"/> As of 2006, the [[World Health Organization]] recommends 12 insecticides in IRS operations, including [[DDT#Use against malaria|DDT]] and the pyrethroids [[cyfluthrin]] and [[deltamethrin]].<ref name="WHO Indoor Residual Spraying"/> This public health use of small amounts of DDT is permitted under the [[Stockholm Convention]], which prohibits its agricultural use.<ref name="van den Berg 2009"/> One problem with all forms of IRS is [[insecticide resistance]]. Mosquitoes affected by IRS tend to rest and live indoors, and due to the irritation caused by spraying, their descendants tend to rest and live outdoors, meaning that they are less affected by the IRS.<ref name="Pates 2005"/> |
|||
<!-- Other --> |
|||
There are a number of other methods to reduce mosquito bites and slow the spread of malaria. Efforts to decrease mosquito larva by decreasing the availability of open water in which they develop or by adding substances to decrease their development is effective in some locations.<ref name="Tusting 2013"/> Electronic mosquito repellent devices which make very high frequency sounds that are supposed to keep female mosquitoes away, do not have supporting evidence.<ref name="Enayati 2007"/> |
|||
===Other methods=== |
|||
Community participation and [[health education]] strategies promoting awareness of malaria and the importance of control measures have been successfully used to reduce the incidence of malaria in some areas of the developing world.<ref name="Lalloo 2006"/> Recognizing the disease in the early stages can stop the disease from becoming fatal. Education can also inform people to cover over areas of stagnant, still water, such as water tanks that are ideal breeding grounds for the parasite and mosquito, thus cutting down the risk of the transmission between people. This is generally used in urban areas where there are large centers of population in a confined space and transmission would be most likely in these areas.<ref name="Mehlhorn 2008"/> [[Intermittent preventive therapy]] is another intervention that has been used successfully to control malaria in pregnant women and infants,<ref name="Bardají 2012"/> and in preschool children where transmission is seasonal.<ref name="Meremikwu 2012"/> |
|||
===Medications=== |
|||
{{Main|Malaria prophylaxis}} |
|||
There are a number of drugs that can help prevent malaria while travelling in areas where it exists. Most of these drugs are also sometimes used in treatment. [[Chloroquine]] may be used where the parasite is still sensitive.<ref name="Jacquerioz 2009"/> Because most ''Plasmodium'' is resistant to one or more medications, one of three medications—[[mefloquine]] (''Lariam''), [[doxycycline]] (available generically), or the combination of [[atovaquone]] and [[proguanil]] hydrochloride (''Malarone'')—is frequently needed.<ref name="Jacquerioz 2009"/> Doxycycline and the atovaquone and proguanil combination are the best tolerated; mefloquine is associated with death, suicide, and neurological and psychiatric symptoms.<ref name="Jacquerioz 2009"/> |
|||
The protective effect does not begin immediately, and people visiting areas where malaria exists usually start taking the drugs one to two weeks before arriving and continue taking them for four weeks after leaving (except for atovaquone/proguanil, which only needs to be started two days before and continued for seven days afterward).<ref name="Freedman 2008"/> The use of preventative drugs is often not practical for those who live in areas where malaria exists, and their use is usually only in short-term visitors and travellers. This is due to the cost of the drugs, [[adverse effect (medicine)|side effects]] from long-term use, and the difficulty in obtaining anti-malarial drugs outside of wealthy nations.<ref name="Fernando 2011"/> The use of preventative drugs where malaria-bearing mosquitoes are present may encourage the development of partial resistance.<ref name="Turschner 2009"/> An exception to this is during pregnancy when taking medication to prevent malaria has been found to improve the weight of the baby at birth and decrease the risk of [[anemia]] in the mother.<ref>{{cite journal|last1=Radeva-Petrova|first1=D|last2=Kayentao|first2=K|last3=Ter Kuile|first3=FO|last4=Sinclair|first4=D|last5=Garner|first5=P|title=Drugs for preventing malaria in pregnant women in endemic areas: any drug regimen versus placebo or no treatment.|journal=The Cochrane database of systematic reviews|date=Oct 10, 2014|volume=10|pages=CD000169|pmid=25300703|doi=10.1002/14651858.CD000169.pub3}}</ref> |
|||
==Treatment== |
|||
Malaria is treated with [[antimalarial medication]]s; the ones used depends on the type and severity of the disease. While [[antipyretics|medications against fever]] are commonly used, their effects on outcomes are not clear.<ref name="Meremikwu 2012b"/> |
|||
<!--Uncomplicated --> |
|||
Uncomplicated malaria may be treated with oral medications. The most effective treatment for ''P. falciparum'' infection is the use of [[artemisinin]]s in combination with other antimalarials (known as [[artemisinin-combination therapy]], or ACT), which decreases resistance to any single drug component.<ref name="Kokwaro 2009"/> These additional antimalarials include: [[amodiaquine]], [[lumefantrine]], mefloquine or [[sulfadoxine/pyrimethamine]].<ref>{{harnvb|WHO|2010|pp=75–86}}</ref> Another recommended combination is [[dihydroartemisinin]] and [[piperaquine]].<ref>{{harvnb|WHO|2010|p=21}}</ref><ref name="Keating 2012"/> ACT is about 90% effective when used to treat uncomplicated malaria.<ref name="Howitt 2012"/> To treat malaria during pregnancy, the WHO recommends the use of quinine plus [[clindamycin]] early in the pregnancy (1st trimester), and ACT in later stages (2nd and 3rd trimesters).<ref name="Manyando 2012"/> In the 2000s (decade), malaria with partial resistance to artemisins emerged in Southeast Asia.<ref name="O'Brien 2011"/><ref name="Fairhurst 2012"/> |
|||
Infection with ''P. vivax'', ''P. ovale'' or ''P. malariae'' is usually treated without the need for hospitalization. Treatment of ''P. vivax'' requires both treatment of blood stages (with chloroquine or ACT) and clearance of liver forms with [[primaquine]].<ref name="Waters 2012"/> |
|||
<!--Severe --> |
|||
Recommended treatment for severe malaria is the [[parenteral administration|intravenous]] use of antimalarial drugs. For severe malaria, artesunate is superior to quinine in both children and adults.<ref name="Sinclair 2012"/> Treatment of severe malaria involves supportive measures that are best done in a [[critical care unit]]. This includes the management of [[hyperpyrexia|high fevers]] and the seizures that may result from it. It also includes monitoring for [[respiratory depression|poor breathing effort]], low blood sugar, and [[hypokalemia|low blood potassium]].<ref name="Sarkar 2009"/> |
|||
===Resistance=== |
|||
[[Drug resistance]] poses a growing problem in 21st-century malaria treatment.<ref name="SinhaMedhi2014"/> Resistance is now common against all classes of antimalarial drugs save the artemisinins. Treatment of resistant strains became increasingly dependent on this class of drugs. The cost of artemisinins limits their use in the developing world.<ref name="White 2008"/> Malaria strains found on the Cambodia–Thailand border are resistant to combination therapies that include artemisinins, and may therefore be untreatable.<ref name="Wongsrichanalai 2008"/> Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years and the availability of substandard artemisinins likely drove the selection of the resistant phenotype.<ref name="Dondorp 2010"/> Resistance to artemisinin has been detected in Cambodia, Myanmar, Thailand, and Vietnam,<ref>{{cite journal |author= World Health Organization |title=Q&A on artemisinin resistance|journal= WHO malaria publications|year=2013|url=http://www.who.int/malaria/media/artemisinin_resistance_qa/en/index.html}}</ref> and there has been emerging resistance in Laos.<ref name = Briggs>Briggs, Helen (30 July 2014) [http://www.bbc.co.uk/news/health-28569966 Call for 'radical action' on drug-resistant malaria] BBC News, health, Retrieved 30 July 2013</ref><ref name="Ashley 2014"/> |
|||
==Prognosis== |
|||
[[File:Malaria world map - DALY - WHO2004.svg|thumb|upright=1.2|[[Disability-adjusted life year]] for malaria per 100,000 inhabitants in 2004{{Multicol}} |
|||
{{legend|#b3b3b3| no data}} |
|||
{{legend|#ffff65| <10}} |
|||
{{legend|#fff200| 0–100}} |
|||
{{legend|#ffdc00| 100–500}} |
|||
{{legend|#ffc600| 500–1000}} |
|||
{{legend|#ffb000|1000–1500}} |
|||
{{legend|#ff9a00|1500–2000}} |
|||
{{Multicol-break}} |
|||
{{legend|#ff8400|2000–2500}} |
|||
{{legend|#ff6e00|2500–2750}} |
|||
{{legend|#ff5800|2750–3000}} |
|||
{{legend|#ff4200|3000–3250}} |
|||
{{legend|#ff2c00|3250–3500}} |
|||
{{legend|#cb0000| ≥3500}} |
|||
{{Multicol-end}}]] |
|||
When properly treated, people with malaria can usually expect a complete recovery.<ref name="CDC Malaria"/> However, severe malaria can progress extremely rapidly and cause death within hours or days.<ref name="Trampuz 2003"/> In the most severe cases of the disease, [[fatality rate]]s can reach 20%, even with intensive care and treatment.<ref name="Nadjm 2012"/> Over the longer term, developmental impairments have been documented in children who have suffered episodes of severe malaria.<ref name="Fernando 2010"/> [[chronic (medicine)|Chronic]] infection without severe disease can occur in an immune-deficiency syndrome associated with a decreased responsiveness to ''[[Salmonella]]'' bacteria and the [[Epstein–Barr virus]].<ref name="Riley 2013"/> |
|||
During childhood, malaria causes anemia during a period of rapid brain development, and also direct brain damage resulting from cerebral malaria.<ref name="Fernando 2010"/> Some survivors of cerebral malaria have an increased risk of neurological and cognitive deficits, [[Emotional and behavioral disorders|behavioural disorders]], and [[epilepsy]].<ref name="Idro 2010"/> Malaria prophylaxis was shown to improve cognitive function and school performance in [[clinical trial]]s when compared to [[placebo]] groups.<ref name="Fernando 2010"/> |
|||
==Epidemiology== |
|||
[[File:Paludisme.png|thumb|left|Distribution of malaria in the world:<ref name="CDC Malaria distribution"/> |
|||
<span style="color:#7e0000; font-size:120%;">♦</span> Elevated occurrence of chloroquine- or multi-resistant malaria |
|||
<br> <span style="color:#f00; font-size:120%;">♦</span> Occurrence of chloroquine-resistant malaria |
|||
<br> <span style="color:#e08040; font-size:120%;">♦</span> No ''Plasmodium falciparum'' or chloroquine-resistance |
|||
<br> <span style="color:silver; font-size:120%;">♦</span> No malaria |
|||
]] |
|||
The WHO estimates that in 2010 there were 219 million cases of malaria resulting in 660,000 deaths.<ref name="Nadjm 2012"/><ref name="World Malaria Report 2012"/> Others have estimated the number of cases at between 350 and 550 million for falciparum malaria<ref name="Olu 2013"/> and deaths in 2010 at 1.24 million<ref name="lancet-glob-mal-mort"/> up from 1.0 million deaths in 1990.<ref name="Loz 2012"/> The majority of cases (65%) occur in children under 15 years old.<ref name="lancet-glob-mal-mort"/> About 125 million pregnant women are at risk of infection each year; in [[Sub-Saharan Africa]], maternal malaria is associated with up to 200,000 estimated infant deaths yearly.<ref name="Hartman 2010"/> There are about 10,000 malaria cases per year in Western Europe, and 1300–1500 in the United States.<ref name="Taylor 2012"/> About 900 people died from the disease in Europe between 1993 and 2003.<ref name="Kajfasz 2009"/> Both the global incidence of disease and resulting mortality have declined in recent years. According to the WHO, deaths attributable to malaria in 2010 were reduced by over a third from a 2000 estimate of 985,000, largely due to the widespread use of insecticide-treated nets and artemisinin-based combination therapies.<ref name="Howitt 2012"/> In 2012, there were 207 million cases of malaria.<!-- <ref name=WHO2014/> --> That year, the disease is estimated to have killed between 473,000 and 789,000 people, many of whom were children in Africa.<ref name=WHO2014>{{cite web|title=Malaria Fact sheet N°94|url=http://www.who.int/mediacentre/factsheets/fs094/en/|website=WHO|accessdate=28 August 2014|date=March 2014}}</ref> |
|||
Malaria is presently endemic in a broad band around the equator, in areas of the Americas, many parts of Asia, and much of Africa; in Sub-Saharan Africa, 85–90% of malaria fatalities occur.<ref name="Layne 2006"/> An estimate for 2009 reported that countries with the highest death rate per 100,000 of population were [[Ivory Coast]] (86.15), [[Angola]] (56.93) and [[Burkina Faso]] (50.66).<ref name="Provost 2011"/> A 2010 estimate indicated the deadliest countries per population were Burkina Faso, [[Mozambique]] and [[Mali]].<ref name="lancet-glob-mal-mort"/> The [[Malaria Atlas Project]] aims to map global [[Endemic (epidemiology)|endemic]] levels of malaria, providing a means with which to determine the global spatial limits of the disease and to assess [[disease burden]].<ref name="Guerra 2007"/><ref name="Hay 2010"/> This effort led to the publication of a map of ''P. falciparum'' endemicity in 2010.<ref name="Gething 2011"/> As of 2010, about 100 countries have endemic malaria.<ref name="World Malaria Report 2012"/><ref name="Feachem 2010"/> Every year, 125 million international travellers visit these countries, and more than 30,000 contract the disease.<ref name="Kajfasz 2009"/> |
|||
The geographic distribution of malaria within large regions is complex, and malaria-afflicted and malaria-free areas are often found close to each other.<ref name="Greenwood 2002"/> Malaria is prevalent in tropical and subtropical regions because of rainfall, consistent high temperatures and high humidity, along with stagnant waters in which mosquito larvae readily mature, providing them with the environment they need for continuous breeding.<ref name="Jamieson 2006"/> In drier areas, outbreaks of malaria have been predicted with reasonable accuracy by mapping rainfall.<ref name="Abeku 2007"/> Malaria is more common in rural areas than in cities. For example, several cities in the [[Greater Mekong Subregion]] of Southeast Asia are essentially malaria-free, but the disease is prevalent in many rural regions, including along international borders and forest fringes.<ref name="Cui 2012"/> In contrast, malaria in Africa is present in both rural and urban areas, though the risk is lower in the larger cities.<ref name="Machault 2011"/> |
|||
==History== |
|||
{{Main|History of malaria|Mosquito-malaria theory}} |
|||
Although the parasite responsible for ''P. falciparum'' malaria has been in existence for 50,000–100,000 years, the population size of the parasite did not increase until about 10,000 years ago, concurrently with advances in agriculture<ref name="Harper 2011"/> and the development of human settlements. Close relatives of the human malaria parasites remain common in chimpanzees. Some evidence suggests that the ''P. falciparum'' malaria may have originated in gorillas.<ref name="Prugnolle 2012"/> |
|||
References to the unique periodic fevers of malaria are found throughout recorded history, beginning in 2700 BC in China.<ref name="Cox 2002"/> Hippocrates described periodic fevers, labelling them tertian, quartan, subtertian and quotidian.<ref>{{cite book|last1=Strong|first1=Richard P|title=Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases|date=1944|publisher=The Blakiston company|location=York, PA|page=3|edition=Seventh|accessdate=8 March 2015}}</ref> The Roman [[Columella ]] associated the disease with insects from swamps.<ref>{{cite book|last1=Strong|first1=Richard P|title=Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases|date=1944|publisher=The Blakiston company|location=York, PA|page=3|edition=Seventh|accessdate=8 March 2015}}</ref> Malaria may have contributed to the decline of the [[Roman Empire]],<ref name="Sallares 2001"/> and was so pervasive in Rome that it was known as the "[[Roman Fever (disease)|Roman fever]]".<ref name="Sallares 2003"/> Several regions in ancient Rome were considered at-risk for the disease because of the favourable conditions present for malaria vectors. This included areas such as southern Italy, the island of [[Sardinia]], the [[Pontine Marshes]], the lower regions of coastal [[Etruria]] and the city of [[Rome]] along the [[Tiber River]]. The presence of stagnant water in these places was preferred by mosquitoes for breeding grounds. Irrigated gardens, swamp-like grounds, runoff from agriculture, and drainage problems from road construction led to the increase of standing water.<ref name="Hays 2005"/> |
|||
[[File:Ronald Ross.jpg|thumb|left|British doctor [[Ronald Ross]] received the [[Nobel Prize for Physiology or Medicine]] in 1902 for his work on malaria.]] |
|||
The term malaria originates from [[Middle Ages|Medieval]] {{lang-it|mala aria}} — "[[miasma theory of disease|bad air]]"; the disease was formerly called ''ague'' or ''marsh fever'' due to its association with swamps and marshland.<ref>{{cite journal|last1=Reiter|first1=P|title=From Shakespeare to Defoe: malaria in England in the Little Ice Age.|journal=Emerging Infectious Diseases|date=1999|volume=6|issue=1|pages=1–11|pmid=10653562|url=http://www.ncbi.nlm.nih.gov/pubmed/10653562|doi=10.3201/eid0601.000101|pmc=2627969}}</ref> The term first appeared in the English literature about 1829.<ref>{{cite book|last1=Strong|first1=Richard P|title=Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases|date=1944|publisher=The Blakiston company|location=York, PA|page=3|edition=Seventh|accessdate=8 March 2015}}</ref> Malaria was once common in most of Europe and North America,<ref name="Lindemann 1999"/> where it is no longer endemic,<ref name="Gratz 2006"/> though imported cases do occur.<ref name="Webb 2009"/> |
|||
Scientific studies on malaria made their first significant advance in 1880, when [[Charles Louis Alphonse Laveran]]—a French army doctor working in the military hospital of [[Constantine, Algeria|Constantine]] in [[Algeria]]—observed parasites inside the red blood cells of infected people for the first time. He therefore proposed that malaria is caused by this organism, the first time a [[protist]] was identified as causing disease.<ref name="Laveran bio"/> For this and later discoveries, he was awarded the 1907 [[Nobel Prize for Physiology or Medicine]]. A year later, [[Carlos Finlay]], a Cuban doctor treating people with [[yellow fever]] in [[Havana]], provided strong evidence that mosquitoes were transmitting disease to and from humans.<ref name="Tan 2008"/> This work followed earlier suggestions by [[Josiah C. Nott]],<ref name="Chernin 1983"/> and work by [[Sir Patrick Manson]], the "father of tropical medicine", on the transmission of [[filariasis]].<ref name="Chernin 1977"/> |
|||
In April 1894, a Scottish physician [[Ronald Ross|Sir Ronald Ross]] visited Sir Patrick Manson at his house on Queen Anne Street, London. This visit was the start of four years of collaboration and fervent research that culminated in 1898 when Ross, who was working in the [[Presidency General Hospital]] in [[Kolkata|Calcutta]], proved the complete life-cycle of the malaria parasite in mosquitoes. He thus proved that the mosquito was the vector for malaria in humans by showing that certain mosquito species transmit malaria to birds. He isolated malaria parasites from the salivary glands of mosquitoes that had fed on infected birds.<ref name="Ross bio"/> For this work, Ross received the 1902 Nobel Prize in Medicine. After resigning from the Indian Medical Service, Ross worked at the newly established [[Liverpool School of Tropical Medicine]] and directed malaria-control efforts in [[Egypt]], [[Panama]], [[Greece]] and [[Mauritius]].<ref name="CDC Ross"/> The findings of Finlay and Ross were later confirmed by a medical board headed by [[Walter Reed]] in 1900. Its recommendations were implemented by [[William C. Gorgas]] in [[Health measures during the construction of the Panama Canal|the health measures undertaken]] during construction of the [[Panama Canal]]. This public-health work saved the lives of thousands of workers and helped develop the methods used in future public-health campaigns against the disease.<ref name="Simmons 1979"/> |
|||
The first effective treatment for malaria came from the bark of [[Cinchona|cinchona tree]], which contains [[quinine]]. This tree grows on the slopes of the [[Andes]], mainly in [[Peru]]. The [[indigenous peoples of Peru]] made a [[tincture]] of cinchona to control fever. Its effectiveness against malaria was found and the [[Jesuit]]s introduced the treatment to Europe around 1640; by 1677, it was included in the [[London Pharmacopoeia]] as an antimalarial treatment.<ref name="Kaufman 2005"/> It was not until 1820 that the active ingredient, quinine, was extracted from the bark, isolated and named by the French chemists [[Pierre Joseph Pelletier]] and [[Joseph Bienaimé Caventou]].<ref name="Pelletier 1820"/><ref name="Kyle 1974"/> |
|||
[[File:Artemisia annua West Virginia.jpg|thumb|right|''Artemisia annua'', source of the antimalarial drug artemisin]] |
|||
Quinine become the predominant malarial medication until the 1920s, when other medications began to be developed. In the 1940s, chloroquine replaced quinine as the treatment of both uncomplicated and severe malaria until resistance supervened, first in Southeast Asia and South America in the 1950s and then globally in the 1980s.<ref name="Achan 2011"/> Artemisinins, discovered by Chinese scientist [[Tu Youyou]] and colleagues in the 1970s from the plant ''[[Artemisia annua]]'', became the recommended treatment for ''P. falciparum'' malaria, administered in combination with other antimalarials as well as in severe disease.<ref name="Hsu 2006"/> |
|||
''Plasmodium vivax'' was used between 1917 and the 1940s for [[malariotherapy]]—deliberate injection of malaria parasites to induce fever to combat certain diseases such as tertiary [[syphilis]]. In 1917, the inventor of this technique, [[Julius Wagner-Jauregg]], received the Nobel Prize in Physiology or Medicine for his discoveries. The technique was dangerous, killing about 15% of patients, so it is no longer in use.<ref name="Vogel 2013"/> |
|||
The first pesticide used for indoor residual spraying was [[DDT]].<ref name="CDC history"/> Although it was initially used exclusively to combat malaria, its use quickly spread to [[agriculture]]. In time, pest control, rather than disease control, came to dominate DDT use, and this large-scale agricultural use led to the evolution of [[pesticide resistance|resistant]] mosquitoes in many regions. The DDT resistance shown by ''Anopheles'' mosquitoes can be compared to [[antibiotic resistance]] shown by bacteria. During the 1960s, awareness of the negative consequences of its indiscriminate use increased, ultimately leading to bans on agricultural applications of DDT in many countries in the 1970s.<ref name="van den Berg 2009"/> Before DDT, malaria was successfully eliminated or controlled in tropical areas like Brazil and Egypt by removing or poisoning the breeding grounds of the mosquitoes or the aquatic habitats of the larva stages, for example by applying the highly toxic arsenic compound [[Paris Green]] to places with standing water.<ref name="Killeen 2002"/> |
|||
[[Malaria vaccine]]s have been an elusive goal of research. The first promising studies demonstrating the potential for a malaria vaccine were performed in 1967 by immunizing mice with live, radiation-[[Attenuator (genetics)|attenuated]] sporozoites, which provided significant protection to the mice upon subsequent injection with normal, viable sporozoites. Since the 1970s, there has been a considerable effort to develop similar vaccination strategies within humans.<ref name="Vanderberg 2009"/> |
|||
==Society and culture== |
|||
{{see also|World Malaria Day}} |
|||
=== Economic impact === |
|||
[[File:Saving Lives with SMS for Life.jpg|thumb|right|Malaria clinic in Tanzania]] |
|||
Malaria is not just a disease commonly associated with poverty: some evidence suggests that it is also a cause of poverty and a major hindrance to [[economic development]].<ref name="IftSoL"/><ref name="Worrall 2005"/> Although tropical regions are most affected, malaria's furthest influence reaches into some temperate zones that have extreme seasonal changes. The disease has been associated with major negative economic effects on regions where it is widespread. During the late 19th and early 20th centuries, it was a major factor in the slow economic development of the American southern states.<ref name="Humphreys 2001"/> |
|||
A comparison of average per capita [[GDP]] in 1995, adjusted for [[purchasing power parity|parity of purchasing power]], between countries with malaria and countries without malaria gives a fivefold difference ($1,526 USD versus $8,268 USD). In the period 1965 to 1990, countries where malaria was common had an average per capita GDP that increased only 0.4% per year, compared to 2.4% per year in other countries.<ref name="Sachs 2002"/> |
|||
Poverty can increase the risk of malaria, since those in poverty do not have the financial capacities to prevent or treat the disease. In its entirety, the economic impact of malaria has been estimated to cost Africa US$12 billion every year. The economic impact includes costs of health care, working days lost due to sickness, days lost in education, decreased productivity due to brain damage from cerebral malaria, and loss of investment and tourism.<ref name="Greenwood 2005"/> The disease has a heavy burden in some countries, where it may be responsible for 30–50% of hospital admissions, up to 50% of [[outpatient]] visits, and up to 40% of public health spending.<ref name="Roll Back Malaria WHO"/> |
|||
Cerebral malaria is one of the leading causes of neurological disabilities in African children.<ref name="Idro 2010"/> Studies comparing cognitive functions before and after treatment for severe malarial illness continued to show significantly impaired school performance and cognitive abilities even after recovery.<ref name="Fernando 2010"/> Consequently, severe and cerebral malaria have far-reaching [[socioeconomic]] consequences that extend beyond the immediate effects of the disease.<ref name="Ricci 2012"/> |
|||
===Counterfeit and substandard drugs=== |
|||
Sophisticated [[counterfeit drugs|counterfeits]] have been found in several Asian countries such as [[Cambodia]],<ref name="Lon 2006"/> [[People's Republic of China|China]],<ref name="Newton 2008"/> [[Indonesia]], [[Laos]], [[Thailand]], and [[Vietnam]], and are an important cause of avoidable death in those countries.<ref name="Newton 2006"/> The WHO said that studies indicate that up to 40% of artesunate-based malaria medications are counterfeit, especially in the Greater [[Mekong]] region and have established a rapid alert system to enable information about counterfeit drugs to be rapidly reported to the relevant authorities in participating countries.<ref name="Parry 2005"/> There is no reliable way for doctors or lay people to detect counterfeit drugs without help from a laboratory. Companies are attempting to combat the persistence of counterfeit drugs by using new technology to provide security from source to distribution.<ref name="Gautam 2009"/> |
|||
Another clinical and public health concern is the proliferation of substandard antimalarial medicines resulting from inappropriate concentration of ingredients, contamination with other drugs or toxic impurities, poor quality ingredients, poor stability and inadequate packaging.<ref name="Caudron 2008"/> A 2012 study demonstrated that roughly one-third of antimalarial medications in Southeast Asia and Sub-Saharan Africa failed chemical analysis, packaging analysis, or were falsified.<ref name="Nayyar 2012"/> |
|||
===War=== |
|||
[[File:"Don't go to Bed with Malaria Mosquito" - NARA - 514146.tif|thumb|right|World War II poster]] |
|||
Throughout history, the contraction of malaria has played a prominent role in the fates of government rulers, nation-states, military personnel, and military actions.<ref name="Russell 2009"/> In 1910, [[Nobel Prize in Medicine]]-winner Ronald Ross (himself a malaria survivor), published a book titled ''The Prevention of Malaria'' that included a chapter titled "The Prevention of Malaria in War." The chapter's author, Colonel C. H. Melville, Professor of Hygiene at [[Royal Army Medical College]] in London, addressed the prominent role that malaria has historically played during wars: "The history of malaria in war might almost be taken to be the history of war itself, certainly the history of war in the Christian era. ... It is probably the case that many of the so-called camp fevers, and probably also a considerable proportion of the camp dysentery, of the wars of the sixteenth, seventeenth and eighteenth centuries were malarial in origin."<ref name="Ross 1910"/> |
|||
Malaria was the most important health hazard encountered by U.S. troops in the South Pacific during [[World War II]], where about 500,000 men were infected.<ref name="Bray 2004"/> According to Joseph Patrick Byrne, "Sixty thousand American soldiers died of malaria during the African and South Pacific campaigns."<ref name="Byrne 2008"/> |
|||
Significant financial investments have been made to procure existing and create new anti-malarial agents. During [[World War I]] and World War II, inconsistent supplies of the natural anti-malaria drugs [[cinchona bark]] and quinine prompted substantial funding into [[research and development]] of other drugs and vaccines. American military organizations conducting such research initiatives include the Navy Medical Research Center, [[Walter Reed Army Institute of Research]], and the [[U.S. Army Medical Research Institute of Infectious Diseases]] of the US Armed Forces.<ref name="malariasite1"/> |
|||
Additionally, initiatives have been founded such as Malaria Control in War Areas (MCWA), established in 1942, and its successor, the Communicable Disease Center (now known as the [[Centers for Disease Control and Prevention]], or CDC) established in 1946. According to the CDC, MCWA "was established to control malaria around military training bases in the southern United States and its territories, where malaria was still problematic".<ref name="autogenerated1"/> |
|||
===Eradication efforts=== |
|||
Several notable attempts are being made to eliminate the parasite from sections of the world, or to eradicate it worldwide. In 2006, the organization [[Malaria No More]] set a public goal of eliminating malaria from Africa by 2015, and the organization plans to dissolve if that goal is accomplished.<ref name="Strom 2011"/> Several malaria vaccines are in clinical trials, which are intended to provide protection for children in endemic areas and reduce the speed of transmission of the disease. {{As of|2012}}, [[The Global Fund to Fight AIDS, Tuberculosis and Malaria]] has distributed 230 million insecticide-treated nets intended to stop mosquito-borne transmission of malaria.<ref name="Global Fund"/> The U.S.-based [[Clinton Foundation]] has worked to manage demand and stabilize prices in the artemisinin market.<ref name="WSJ 2008"/> Other efforts, such as the Malaria Atlas Project, focus on analysing climate and weather information required to accurately predict the spread of malaria based on the availability of habitat of malaria-carrying parasites.<ref name="Guerra 2007"/> The [[Malaria Policy Advisory Committee]] (MPAC) of the [[World Health Organization]] (WHO) was formed in 2012, "to provide strategic advice and technical input to WHO on all aspects of malaria control and elimination".<ref>{{cite web|title=Executive summary and key points|url=http://www.who.int/entity/malaria/publications/world_malaria_report_2013/wmr13_summary_key_points.pdf?ua=1|work=World Malaria Report 2013|publisher=World Health Organization|accessdate=13 February 2014}}</ref> In November 2013, WHO and the malaria vaccine funders group set a goal to develop vaccines designed to interrupt malaria transmission with the long-term goal of malaria eradication.<ref>{{cite web|title=World Malaria Report 2013|url=http://www.who.int/entity/malaria/publications/world_malaria_report_2013/wmr2013_no_profiles.pdf?ua=1|publisher=World Health Organization|accessdate=13 February 2014}}</ref> |
|||
Malaria has been successfully eliminated or greatly reduced in certain areas. Malaria was once common in the United States and southern Europe, but vector control programs, in conjunction with the monitoring and treatment of infected humans, eliminated it from those regions. Several factors contributed, such as the draining of wetland breeding grounds for agriculture and other changes in [[water management]] practices, and advances in sanitation, including greater use of glass windows and screens in dwellings.<ref name="Meade 2010"/> Malaria was eliminated from most parts of the USA in the early 20th century by such methods, and the use of the [[pesticide]] DDT and other means eliminated it from the remaining pockets in the South in the 1950s.<ref name="Williams 1963"/> (see [[National Malaria Eradication Program]]) In [[Suriname]], the disease has been cleared from its capital city and coastal areas through a three-pronged approach initiated by the [[Global Malaria Eradication program]] in 1955, involving: vector control through the use of DDT and IRS; regular collection of blood smears from the population to identify existing malaria cases; and providing chemotherapy to all affected individuals.<ref name="Breeveld 2012"/> [[Bhutan]] is pursuing an aggressive malaria elimination strategy, and has achieved a 98.7% decline in microscopy-confirmed cases from 1994 to 2010. In addition to vector control techniques such as IRS in high-risk areas and thorough distribution of long-lasting ITNs, factors such as economic development and increasing access to health services have contributed to Bhutan's successes in reducing malaria incidence.<ref name="Yangzom 2012"/> |
|||
==Research== |
|||
===Vaccine=== |
|||
{{See also|Malaria vaccine}} |
|||
Immunity (or, more accurately, [[immune tolerance|tolerance]]) to ''P. falciparum'' malaria does occur naturally, but only in response to years of repeated infection.<ref name="Tran 2012"/> An individual can be protected from a ''P. falciparum'' infection if they receive about a thousand bites from mosquitoes that carry a version of the parasite rendered non-infective by a dose of [[X-ray]] [[irradiation]].<ref name="Hill 2011"/> An effective [[Vaccination|vaccine]] is not yet available for malaria, although several are under development.<ref name="Geels 2011"/> The highly [[polymorphism (biology)|polymorphic]] nature of many ''P. falciparum'' proteins results in significant challenges to vaccine design. Vaccine candidates that target antigens on gametes, zygotes, or ookinetes in the mosquito midgut aim to block the transmission of malaria. These transmission-blocking vaccines induce antibodies in the human blood; when a mosquito takes a blood meal from a protected individual, these antibodies prevent the parasite from completing its development in the mosquito.<ref name="Cromptom 2010"/> Other vaccine candidates, targeting the blood-stage of the parasite's life cycle, have been inadequate on their own.<ref name="Graves 2006b"/> For example, [[SPf66]] was tested extensively in areas where the disease is common in the 1990s, but trials showed it to be insufficiently effective.<ref name="Graves 2006"/> Several potential vaccines targeting the pre-erythrocytic stage of the parasite's life cycle are being developed, with [[RTS,S]] as a leading candidate;<ref name="Hill 2011"/> it is expected to be licensed in 2015.<ref name="Riley 2013"/> A US biotech company, [[Sanaria]], is developing a pre-erythrocytic [[attenuated vaccine]] called PfSPZ that uses whole sporozoites to induce an immune response.<ref name="Hoffman 2010"/> In 2006, the [[Malaria Vaccine Advisory Committee]] to the WHO outlined a "Malaria Vaccine Technology Roadmap" that has as one of its landmark objectives to "develop and license a first-generation malaria vaccine that has a protective efficacy of more than 50% against severe disease and death and lasts longer than one year" by 2015.<ref name="Roadmap 2006"/> |
|||
===Medications=== |
|||
Malaria parasites contain [[apicoplast]]s, organelles usually found in plants, complete with their own [[genome]]s. These apicoplasts are thought to have originated through the [[Endosymbiont|endosymbiosis]] of algae and play a crucial role in various aspects of parasite metabolism, such as [[fatty acid biosynthesis]]. Over 400 proteins have been found to be produced by apicoplasts and these are now being investigated as possible targets for novel anti-malarial drugs.<ref name="Kalanon 2010"/> |
|||
With the onset of drug-resistant ''Plasmodium'' parasites, new strategies are being developed to combat the widespread disease. One such approach lies in the introduction of synthetic [[pyridoxal]]-amino acid [[adduct]]s, which are taken up by the parasite and ultimately interfere with its ability to create several essential [[B vitamin]]s.<ref name="Müller 2010"/><ref name="Du 2011"/> Antimalarial drugs using [[Organometallic chemistry|synthetic metal-based]] [[coordination complex|complexes]] are attracting research interest.<ref name="Biot 2012"/><ref name="Roux 2012"/> |
|||
*(+)-SJ733: Part of a wider class of experimental drugs called [[spiroindolone]]. It inhibits the ATP4 protein of infected red blood cells that cause the cells to shrink and become rigid like the aging cells. This triggers the immune system to eliminate the infected cells from the system as demonstrated in a mouse model. As of 2014, a [[Phases of clinical research#Phase 1|Phase 1 clinical trial]] to assess the safety profile in human is planned by the [[Howard Hughes Medical Institute]].<ref name=atp4>{{cite web|url= http://www.fiercebiotechresearch.com/story/new-malaria-drug-unleashes-immune-system-assault-infected-cells/2014-12-08|title=New malaria drug unleashes an immune system assault on infected cells|author=Carroll, John|publisher=fiercebiotechresearch.com|date=8 December 2014|accessdate=16 December 2014}}</ref> |
|||
*NITD246 and [[NITD609]]: Also belonged to the class of spiroindolone and target the ATP4 protein. <ref name=atp4/> |
|||
===其他=== |
|||
A non-chemical vector control strategy involves genetic manipulation of malaria mosquitoes. Advances in [[genetic engineering]] technologies make it possible to introduce foreign DNA into the mosquito genome and either decrease the lifespan of the mosquito, or make it more resistant to the malaria parasite. [[Sterile insect technique]] is a genetic control method whereby large numbers of sterile males mosquitoes are reared and released. Mating with wild females reduces the wild population in the subsequent generation; repeated releases eventually eliminate the target population.<ref name="Raghavendra 2011"/> |
|||
[[Genomics]] is central to malaria research. With the [[whole genome sequencing|sequencing]] of ''P. falciparum'', one of its vectors ''Anopheles gambiae'', and the [[human genome]], the genetics of all three organisms in the malaria lifecycle can be studied.<ref name="Aultman 2002"/> Another new application of genetic technology is the ability to produce [[Genetically modified organism|genetically modified]] mosquitoes that do not transmit malaria, potentially allowing [[biological control]] of malaria transmission.<ref name="Ito 2002"/> |
|||
==Other animals== |
|||
Nearly 200 parasitic ''Plasmodium'' species have been identified that infect [[Plasmodium species infecting birds|birds]], [[Plasmodium species infecting reptiles|reptiles]], and [[Plasmodium species infecting mammals other than primates|other mammals]],<ref name="Rich 2006"/> and about 30 species naturally infect non-human primates.<ref name="Baird 2009"/> Some malaria parasites that affect non-human primates (NHP) serve as [[model organism]]s for human malarial parasites, such as ''[[Plasmodium coatneyi|P. coatneyi]]'' (a model for ''P. falciparum'') and ''[[Plasmodium cynomolgi|P. cynomolgi]]'' (''P. vivax''). Diagnostic techniques used to detect parasites in NHP are similar to those employed for humans.<ref name="Ameri 2010"/> Malaria parasites that infect rodents are widely used as models in research, such as ''[[Plasmodium berghei|P. berghei]]''.<ref name="Mlambo 2008"/> [[Avian malaria]] primarily affects species of the order [[Passeriformes]], and poses a substantial threat to birds of [[Hawaii]], the [[Galapagos]], and other [[archipelago]]es. The parasite ''[[Plasmodium relictum|P. relictum]]'' is known to play a role in limiting the distribution and abundance of [[endemic birds of Hawaii|endemic Hawaiian birds]]. [[Global warming]] is expected to increase the prevalence and global distribution of avian malaria, as elevated temperatures provide optimal conditions for parasite reproduction.<ref name="LaPointe 2012"/> |
|||
{{TransH}} |
|||
==病理分段== |
==病理分段== |
2015年5月20日 (三) 15:35的版本
疟疾 | |
---|---|
![]() | |
人体血液中的恶性疟原虫环状体和配子母细胞 | |
症状 | intermittent fever[*], periodic fever[*], 肝腫大, 贫血, 脾腫大[*], 黄疸, 昏迷, 發冷 |
肇因 | 恶性疟原虫, 间日疟原虫, 三日瘧, 卵形瘧, 猴瘧蟲 |
診斷方法 | 血膜[*], 光学显微镜, 聚合酶链式反应 |
治療 | 抗疟药, 解熱劑, intravenous fluid replacement[*], 对症治疗 |
盛行率 | 729、22、2、1,974、881,730、343,527、31,479、21,309、177,767、3,769,051、500,000,000、4,114 |
死亡數 | 445,000、627,000 |
醫學專科 | 感染科、熱帶醫學、寄生虫学 |
瘧疾(英語:Malaria)是一種蚊媒病,由寄生性的原生生物界(一種單細胞 微生物)瘧原蟲屬[1]引起,人類及其他動物的全球性急性寄生蟲傳染病。瘧疾引起的典型症狀有發燒、倦怠不適、嘔吐以及 頭痛。在嚴重的病例中會引起黃疸 、癲癇發作、昏迷或 死亡[2]。這些症狀通常在被蚊子叮咬後十到十五天內開始出現,沒有受到適當治療的病人(但症狀緩解)可能於數個月後會再次出現這些症狀[1]。而在瘧疾倖存者中,再次感染通常引起的症狀通常較輕微。如果沒有持續暴露在瘧疾環境中,這種少量的抵抗力會在數月至數年間消失[3]。
一般來說,瘧疾是透過受感染的雌性瘧蚊叮咬來傳播的。寄生蟲瘧原蟲會透過瘧蚊叮咬從蚊子的唾液中傳入至人類的血液中[1],接著瘧原蟲會隨血液移動至肝臟,在肝臟細胞中發育成熟及繁殖。瘧原蟲屬中有五種是可藉由感染人類進行散播[2],多數死亡案例由惡性瘧(P. falciparum)、間日瘧(P. vivax)及卵形瘧(P. ovale)所造成,而三日瘧(P. malariae)則產生較輕微的瘧疾症狀[1][2]。另外,猴瘧蟲(P. knowlesi,又稱諾氏瘧蟲)較少在人類身上造成疾病[1]。診斷瘧疾主要透過顯微鏡檢驗血液抹片或是加上快速瘧疾抗原診斷測試[2]。近年發展聚合酶鏈式反應來偵測瘧原蟲的DNA,但目前因為成本及複雜性,而沒有廣泛地應用在瘧疾盛行地區[4]。
避免瘧蚊叮咬能夠降低感染瘧疾的風險,透過使用蚊帳以及驅蟲劑 或其他控制蚊蟲生長的方法,像是噴灑殺蟲劑以及清除積水[2]。前往瘧疾盛行區的旅客可以使用幾種藥物來預防瘧疾,而瘧疾好發地區的嬰兒及過了懷孕初期第一妊娠期的孕婦也建議適量使用周效磺胺/比利美胺。20世紀中期以後也出現了一些新的藥物,中國科學家研製的 青蒿素 有很好的抗瘧疾效果。儘管有所需求,但瘧疾尚無疫苗,目前相關研究正在進行中[1]。瘧疾的建議治療是併用青蒿素及另一種抗瘧疾藥物[1][2],包括甲氟喹、苯芴醇或周效磺胺/比利美胺[5]。如果青蒿素無法取得,則可使用奎寧加上去氧羥四環素[5]。由於擔心抗藥性的增加,建議在瘧疾盛行地區儘可能確診為瘧疾後再開始治療。目前瘧疾逐漸對於幾種藥物發展出抗藥性,例如:具有氯化奎寧(氯喹)抗藥性的惡性瘧已經散布到多數的瘧疾地區,另外青蒿素抗藥性問題在部分東南亞地區日益嚴重[1]。
瘧疾普遍存在於熱帶及亞熱帶地區,位於赤道周圍的寬大帶狀區域[2]。主要流行地區是 非洲中部、南亞、東南亞及 南美北部的熱帶地區,這其中又以 非洲 的疫情最甚。就中國而言,瘧疾主要的流行地帶為華中華南的叢林多山地區,但疫情遠較非洲為輕。世界衛生組織預估2012年,將會有二億七百萬例瘧疾案例,同時也預估該年因患瘧疾死亡人數介於四十七萬三千人至七十八萬九千人之間,多數為非洲的孩童[1]。瘧疾與貧困息息相關,造成經濟發展相當大的負面影響[6][7]。非洲預估每年損失一百二十億美元,因為健康照護的花費增加,勞動力減少,以及瘧疾對觀光旅遊業造成的影響[8]。根據世界衛生組織的統計,2013年全世界的瘧疾病例共有1.98億例。[9][10]造成584,000至855,000人死亡,當中有90%是在非洲發生[11][9]。
主要病徵

感染疟原虫后8-25天会发病[12],但如果有先服用預防性藥物的人可能會在之後才發生[4]。病人可能会有如下流感樣症狀[13]:忽冷忽热、头痛、发热、顫栗、关节痛、呕吐、溶血反应、疟原性贫血、黄疸、血尿、视网膜损害、抽搐等[14]。最典型的症状为忽冷忽热循环——先发冷、打冷颤,然后发热、出汗。这是因为疟原虫生活周期具有明显的生理节奏(circadian rhythm),如間日疟原虫(Plasmodium vivax)导致的疟疾发热周期为48小时,因而病患的发烧症状也呈现周期性。如果疟原虫侵入脑部血管,则会导致最为严重的脑部疟疾,这通常会造成病者昏迷。由于早期迹象与流行性感冒有相似之处,许多对该疾病不熟悉的外来旅游者容易将疟疾误认为感冒,从而因为没有得到及时的药物治疗而使得病情恶化。
按照疟疾病征的严重程度不同,疟疾可以分为非重症疟疾(uncomplicated malaria)和重症疟疾(complicated / severe malaria),能有效治疗这两类疟疾的药物不太相同。重症瘧疾通常是由惡性瘧原蟲所導致,因此又稱為惡性瘧疾,通常在感染後9至30天發病[13],得到腦瘧疾的患者常產生神經系統疾病,包括姿態異常、眼球震顫、共軛凝視麻痺(眼球無法朝同一方向轉動)、角弓反張、抽搐,或昏迷[13]。
併發症
瘧疾常常導致一些嚴重的併發症。其中一個症狀是呼吸困難,在惡性瘧疾的患者當中,多達25%的成人和40%的幼童會有此症狀。可能病因為代謝性酸中毒造成的呼吸代償、非心源性肺水腫、併發肺炎,和貧血。
如果瘧疾患者同時感染上HIV,死亡風險則會提高。[15]腎臟損傷會導致黑水熱,原因是瘧原蟲會造成溶血,使血紅素進入尿液當中,造成尿液呈暗紅色至黑色[13]。
惡性瘧疾會導致腦瘧疾,會導致視網膜白化,此為臨床上重要判斷依據。[16]其他症狀包括脾腫大、嚴重頭痛、肝腫大、低血糖,以及腎衰竭[13]。腎衰竭則可能導致血紅蛋白尿、自發性出血和凝血功能障礙。[17] 得到瘧疾的孕婦可能會造成死胎、流產,胎兒體重過輕[18]。特別是在惡性瘧疾,和部分間日瘧原蟲瘧疾上[19]。
病原
瘧疾的致病源是瘧原蟲(疟原虫属,Plasmodium spp.),这是一类单细胞真核生物,属于细胞内寄生蟲,它们以瘧蚊(蚊子的其中一個屬,瘧蚊屬的部分種類)作為传病媒介,通过雌蚊叮咬吸血来傳播病原体。
疟原虫属生物是顶复合器门(Apicomplexa)的原生生物,这一门的生物几乎都是寄生虫。大部分脊椎动物都可以作为疟原虫的主要宿主,比如啮齿动物,蝙蝠,蜥蜴,鸟等等。这也使得生物学家可以通过建立生物模型(比方说,用老鼠做疟疾病理研究)的方式来研究人类疟疾。
- 三日疟原虫(Plasmodium malariae)
- 卵形疟原虫(Plasmodium ovale)
- 间日疟原虫(Plasmodium vivax)
- 諾氏瘧原蟲(Plasmodium knowlesi):專門感染獼猴瘧原蟲,但可能感染人類。
非洲最主要的患者為惡性瘧原蟲,但非洲之外的國家間日瘧原蟲的比例則較高。[23]。雖然曾經有文獻指出人類可能會被一些人猿類傳染瘧疾,但除了諾氏瘧原蟲[22]之外,其餘都沒有什麼公共衛生重要性。[24]
中国以间日疟与恶性疟最为常见,三日疟少见,卵形疟极少发生。恶性疟主要发生在西南与海南。间日疟发生在东北、华北、西北。
全球暖化增加了瘧蚊的活動範圍,但對於瘧疾的傳播影響,至今仍不明確[25][26]。
生活史

疟原虫的生命周期很复杂。在瘧原蟲的生活始中,雌性瘧蚊(最終宿主)扮演的是一個媒介的角色。雌按蚊叮咬人时,唾液中的疟原虫的长梭形的子孢子(sporozoite)进入人体内,随血液运移到肝脏,侵入肝细胞。子孢子在肝细胞内部吸收营养,长大成熟后分裂生殖形成很多小的裂殖子(merozoites)。裂殖子成熟后,破坏肝细胞进入体液、血液中,一部分再侵入肝细胞重复上述循环,一部分侵入红细胞。
在红细胞内,裂殖子逐渐吸收血红蛋白作为营养长大,成为像个戒指的环状体。环状体进一步长大,向四周伸出伪足,称为阿米巴样体或大滋养体(trophozoites)。大滋养体进一步发育形成裂殖体(schizonts),裂殖体成熟后放出很多裂殖子,破坏红细胞后进入血液,继续感染其他红细胞。由于人体内的疟原虫的裂殖子同时破坏大量红细胞进入血液,人体会产生疟疾的典型症状,如发冷发热。如果宿主环境不利,一些裂殖子进入红细胞后可形成大、小配子母细胞。这些配子母细胞在人体中不再进一步发育,如果不能被蚊子吸血时吸走,配子母细胞在人体内可存活60天。
当蚊子吸取受感染人体的血液后,雄、雌配子母细胞(gametocytes)进入蚊子中腸内,进入有性繁殖世代。雌雄配子母細胞會在蚊子的中腸成熟並結合為卵動子,並在腸壁下形成卵囊(oocyte)。卵囊中疟原虫进行无性繁殖,最终形成子孢子。成熟后,卵囊破裂,子孢子进入蚊子体腔,穿透各种组织,进入蚊子唾液腺。蚊子唾液腺中的子孢子可达20万,子孢子在蚊子体内存活70天,准备感染新的脊椎动物宿主[27][28]。
除了蚊蟲感染之外,瘧原蟲也有可能藉由輸血感染,但此情況相當罕見。[29]2006年,台北榮民總醫院發生了一起嚴重的院內感染案例,造成4名病患感染惡性瘧疾死亡,即因輸血方式不當。[30]
Recurrent malaria
Symptoms of malaria can recur after varying symptom-free periods. Depending upon the cause, recurrence can be classified as either recrudescence, relapse, or reinfection. Recrudescence is when symptoms return after a symptom-free period. It is caused by parasites surviving in the blood as a result of inadequate or ineffective treatment.[31] Relapse is when symptoms reappear after the parasites have been eliminated from blood but persist as dormant hypnozoites in liver cells. Relapse commonly occurs between 8–24 weeks and is commonly seen with P. vivax and P. ovale infections.[4] P. vivax malaria cases in temperate areas often involve overwintering by hypnozoites, with relapses beginning the year after the mosquito bite.[32] Reinfection means the parasite that caused the past infection was eliminated from the body but a new parasite was introduced. Reinfection cannot readily be distinguished from recrudescence, although recurrence of infection within two weeks of treatment for the initial infection is typically attributed to treatment failure.[33] People may develop some immunity when exposed to frequent infections.[34]
Pathophysiology

Malaria infection develops via two phases: one that involves the liver (exoerythrocytic phase), and one that involves red blood cells, or erythrocytes (erythrocytic phase). When an infected mosquito pierces a person's skin to take a blood meal, sporozoites in the mosquito's saliva enter the bloodstream and migrate to the liver where they infect hepatocytes, multiplying asexually and asymptomatically for a period of 8–30 days.[35]
After a potential dormant period in the liver, these organisms differentiate to yield thousands of merozoites, which, following rupture of their host cells, escape into the blood and infect red blood cells to begin the erythrocytic stage of the life cycle.[35] The parasite escapes from the liver undetected by wrapping itself in the cell membrane of the infected host liver cell.[36]
Within the red blood cells, the parasites multiply further, again asexually, periodically breaking out of their host cells to invade fresh red blood cells. Several such amplification cycles occur. Thus, classical descriptions of waves of fever arise from simultaneous waves of merozoites escaping and infecting red blood cells.[35]
Some P. vivax sporozoites do not immediately develop into exoerythrocytic-phase merozoites, but instead produce hypnozoites that remain dormant for periods ranging from several months (7–10 months is typical) to several years. After a period of dormancy, they reactivate and produce merozoites. Hypnozoites are responsible for long incubation and late relapses in P. vivax infections,[32] although their existence in P. ovale is uncertain.[37]
The parasite is relatively protected from attack by the body's immune system because for most of its human life cycle it resides within the liver and blood cells and is relatively invisible to immune surveillance. However, circulating infected blood cells are destroyed in the spleen. To avoid this fate, the P. falciparum parasite displays adhesive proteins on the surface of the infected blood cells, causing the blood cells to stick to the walls of small blood vessels, thereby sequestering the parasite from passage through the general circulation and the spleen.[38] The blockage of the microvasculature causes symptoms such as in placental malaria.[39] Sequestered red blood cells can breach the blood–brain barrier and cause cerebral malaria.[40]
Genetic resistance
According to a 2005 review, due to the high levels of mortality and morbidity caused by malaria—especially the P. falciparum species—it has placed the greatest selective pressure on the human genome in recent history. Several genetic factors provide some resistance to it including sickle cell trait, thalassaemia traits, glucose-6-phosphate dehydrogenase deficiency, and the absence of Duffy antigens on red blood cells.[41][42]
The impact of sickle cell trait on malaria immunity illustrates some evolutionary trade-offs that have occurred because of endemic malaria. Sickle cell trait causes a defect in the hemoglobin molecule in the blood. Instead of retaining the biconcave shape of a normal red blood cell, the modified hemoglobin S molecule causes the cell to sickle or distort into a curved shape. Due to the sickle shape, the molecule is not as effective in taking or releasing oxygen. Infection causes red cells to sickle more, and so they are removed from circulation sooner. This reduces the frequency with which malaria parasites complete their life cycle in the cell. Individuals who are homozygous (with two copies of the abnormal hemoglobin beta allele) have sickle-cell anaemia, while those who are heterozygous (with one abnormal allele and one normal allele) experience resistance to malaria. Although the shorter life expectancy for those with the homozygous condition would not sustain the trait's survival, the trait is preserved because of the benefits provided by the heterozygous form.[42][43]
Liver dysfunction
Liver dysfunction as a result of malaria is uncommon and usually only occurs in those with other liver condition such as viral hepatitis or chronic liver disease. The syndrome is sometimes called malarial hepatitis.[44] While it has been considered a rare occurrence, malarial hepatopathy has seen an increase, particularly in Southeast Asia and India. Liver compromise in people with malaria correlates with a greater likelihood of complications and death.[44]
Diagnosis


Owing to the non-specific nature of the presentation of symptoms, diagnosis of malaria in non-endemic areas requires a high degree of suspicion, which might be elicited by any of the following: recent travel history, enlarged spleen, fever, low number of platelets in the blood, and higher-than-normal levels of bilirubin in the blood combined with a normal level of white blood cells.[4]
Malaria is usually confirmed by the microscopic examination of blood films or by antigen-based rapid diagnostic tests (RDT).[45][46] Microscopy is the most commonly used method to detect the malarial parasite—about 165 million blood films were examined for malaria in 2010.[47] Despite its widespread usage, diagnosis by microscopy suffers from two main drawbacks: many settings (especially rural) are not equipped to perform the test, and the accuracy of the results depends on both the skill of the person examining the blood film and the levels of the parasite in the blood. The sensitivity of blood films ranges from 75–90% in optimum conditions, to as low as 50%. Commercially available RDTs are often more accurate than blood films at predicting the presence of malaria parasites, but they are widely variable in diagnostic sensitivity and specificity depending on manufacturer, and are unable to tell how many parasites are present.[47]
In regions where laboratory tests are readily available, malaria should be suspected, and tested for, in any unwell person who has been in an area where malaria is endemic. In areas that cannot afford laboratory diagnostic tests, it has become common to use only a history of fever as the indication to treat for malaria—thus the common teaching "fever equals malaria unless proven otherwise". A drawback of this practice is overdiagnosis of malaria and mismanagement of non-malarial fever, which wastes limited resources, erodes confidence in the health care system, and contributes to drug resistance.[48] Although polymerase chain reaction-based tests have been developed, they are not widely used in areas where malaria is common as of 2012, due to their complexity.[4]
Classification
Malaria is classified into either "severe" or "uncomplicated" by the World Health Organization (WHO).[4] It is deemed severe when any of the following criteria are present, otherwise it is considered uncomplicated.[49]
- Decreased consciousness
- Significant weakness such that the person is unable to walk
- Inability to feed
- Two or more convulsions
- Low blood pressure (less than 70 mmHg in adults and 50 mmHg in children)
- Breathing problems
- Circulatory shock
- Kidney failure or hemoglobin in the urine
- Bleeding problems, or hemoglobin less than 50 g/L (5 g/dL)
- Pulmonary oedema
- Blood glucose less than 2.2 mmol/L (40 mg/dL)
- Acidosis or lactate levels of greater than 5 mmol/L
- A parasite level in the blood of greater than 100,000 per microlitre (µL) in low-intensity transmission areas, or 250,000 per µL in high-intensity transmission areas
Cerebral malaria is defined as a severe P. falciparum-malaria presenting with neurological symptoms, including coma (with a Glasgow coma scale less than 11, or a Blantyre coma scale greater than 3), or with a coma that lasts longer than 30 minutes after a seizure.[50]
Prevention

Methods used to prevent malaria include medications, mosquito elimination and the prevention of bites. There is no vaccine for malaria. The presence of malaria in an area requires a combination of high human population density, high anopheles mosquito population density and high rates of transmission from humans to mosquitoes and from mosquitoes to humans. If any of these is lowered sufficiently, the parasite will eventually disappear from that area, as happened in North America, Europe and parts of the Middle East. However, unless the parasite is eliminated from the whole world, it could become re-established if conditions revert to a combination that favours the parasite's reproduction. Furthermore, the cost per person of eliminating anopheles mosquitoes rises with decreasing population density, making it economically unfeasible in some areas.[51]
Prevention of malaria may be more cost-effective than treatment of the disease in the long run, but the initial costs required are out of reach of many of the world's poorest people. There is a wide difference in the costs of control (i.e. maintenance of low endemicity) and elimination programs between countries. For example, in China—whose government in 2010 announced a strategy to pursue malaria elimination in the Chinese provinces—the required investment is a small proportion of public expenditure on health. In contrast, a similar program in Tanzania would cost an estimated one-fifth of the public health budget.[52]
Mosquito control

Vector control refers to methods used to decrease malaria by reducing the levels of transmission by mosquitoes. For individual protection, the most effective insect repellents are based on DEET or picaridin.[53] Insecticide-treated mosquito nets (ITNs) and indoor residual spraying (IRS) have been shown to be highly effective in preventing malaria among children in areas where malaria is common.[54][55] Prompt treatment of confirmed cases with artemisinin-based combination therapies (ACTs) may also reduce transmission.[56]
Mosquito nets help keep mosquitoes away from people and reduce infection rates and transmission of malaria. Nets are not a perfect barrier and are often treated with an insecticide designed to kill the mosquito before it has time to find a way past the net. Insecticide-treated nets are estimated to be twice as effective as untreated nets and offer greater than 70% protection compared with no net.[57] Between 2000 and 2008, the use of ITNs saved the lives of an estimated 250,000 infants in Sub-Saharan Africa.[58] About 13% of households in Sub-Saharan countries own ITNs.[59] In 2000, 1.7 million (1.8%) African children living in areas of the world where malaria is common were protected by an ITN. That number increased to 20.3 million (18.5%) African children using ITNs in 2007, leaving 89.6 million children unprotected.[60] An increased percentage of African households (31%) are estimated to own at least one ITN in 2008. Most nets are impregnated with pyrethroids, a class of insecticides with low toxicity. They are most effective when used from dusk to dawn.[61] It is recommended to hang a large "bed net" above the center of a bed and either tuck the edges under the mattress or make sure it is large enough such that it touches the ground.[62]
Indoor residual spraying is the spraying of insecticides on the walls inside a home. After feeding, many mosquitoes rest on a nearby surface while digesting the bloodmeal, so if the walls of houses have been coated with insecticides, the resting mosquitoes can be killed before they can bite another person and transfer the malaria parasite.[63] As of 2006, the World Health Organization recommends 12 insecticides in IRS operations, including DDT and the pyrethroids cyfluthrin and deltamethrin.[64] This public health use of small amounts of DDT is permitted under the Stockholm Convention, which prohibits its agricultural use.[65] One problem with all forms of IRS is insecticide resistance. Mosquitoes affected by IRS tend to rest and live indoors, and due to the irritation caused by spraying, their descendants tend to rest and live outdoors, meaning that they are less affected by the IRS.[66]
There are a number of other methods to reduce mosquito bites and slow the spread of malaria. Efforts to decrease mosquito larva by decreasing the availability of open water in which they develop or by adding substances to decrease their development is effective in some locations.[67] Electronic mosquito repellent devices which make very high frequency sounds that are supposed to keep female mosquitoes away, do not have supporting evidence.[68]
Other methods
Community participation and health education strategies promoting awareness of malaria and the importance of control measures have been successfully used to reduce the incidence of malaria in some areas of the developing world.[69] Recognizing the disease in the early stages can stop the disease from becoming fatal. Education can also inform people to cover over areas of stagnant, still water, such as water tanks that are ideal breeding grounds for the parasite and mosquito, thus cutting down the risk of the transmission between people. This is generally used in urban areas where there are large centers of population in a confined space and transmission would be most likely in these areas.[70] Intermittent preventive therapy is another intervention that has been used successfully to control malaria in pregnant women and infants,[71] and in preschool children where transmission is seasonal.[72]
Medications
There are a number of drugs that can help prevent malaria while travelling in areas where it exists. Most of these drugs are also sometimes used in treatment. Chloroquine may be used where the parasite is still sensitive.[73] Because most Plasmodium is resistant to one or more medications, one of three medications—mefloquine (Lariam), doxycycline (available generically), or the combination of atovaquone and proguanil hydrochloride (Malarone)—is frequently needed.[73] Doxycycline and the atovaquone and proguanil combination are the best tolerated; mefloquine is associated with death, suicide, and neurological and psychiatric symptoms.[73]
The protective effect does not begin immediately, and people visiting areas where malaria exists usually start taking the drugs one to two weeks before arriving and continue taking them for four weeks after leaving (except for atovaquone/proguanil, which only needs to be started two days before and continued for seven days afterward).[74] The use of preventative drugs is often not practical for those who live in areas where malaria exists, and their use is usually only in short-term visitors and travellers. This is due to the cost of the drugs, side effects from long-term use, and the difficulty in obtaining anti-malarial drugs outside of wealthy nations.[75] The use of preventative drugs where malaria-bearing mosquitoes are present may encourage the development of partial resistance.[76] An exception to this is during pregnancy when taking medication to prevent malaria has been found to improve the weight of the baby at birth and decrease the risk of anemia in the mother.[77]
Treatment
Malaria is treated with antimalarial medications; the ones used depends on the type and severity of the disease. While medications against fever are commonly used, their effects on outcomes are not clear.[78]
Uncomplicated malaria may be treated with oral medications. The most effective treatment for P. falciparum infection is the use of artemisinins in combination with other antimalarials (known as artemisinin-combination therapy, or ACT), which decreases resistance to any single drug component.[79] These additional antimalarials include: amodiaquine, lumefantrine, mefloquine or sulfadoxine/pyrimethamine.[80] Another recommended combination is dihydroartemisinin and piperaquine.[81][82] ACT is about 90% effective when used to treat uncomplicated malaria.[58] To treat malaria during pregnancy, the WHO recommends the use of quinine plus clindamycin early in the pregnancy (1st trimester), and ACT in later stages (2nd and 3rd trimesters).[83] In the 2000s (decade), malaria with partial resistance to artemisins emerged in Southeast Asia.[84][85]
Infection with P. vivax, P. ovale or P. malariae is usually treated without the need for hospitalization. Treatment of P. vivax requires both treatment of blood stages (with chloroquine or ACT) and clearance of liver forms with primaquine.[86]
Recommended treatment for severe malaria is the intravenous use of antimalarial drugs. For severe malaria, artesunate is superior to quinine in both children and adults.[87] Treatment of severe malaria involves supportive measures that are best done in a critical care unit. This includes the management of high fevers and the seizures that may result from it. It also includes monitoring for poor breathing effort, low blood sugar, and low blood potassium.[88]
Resistance
Drug resistance poses a growing problem in 21st-century malaria treatment.[89] Resistance is now common against all classes of antimalarial drugs save the artemisinins. Treatment of resistant strains became increasingly dependent on this class of drugs. The cost of artemisinins limits their use in the developing world.[90] Malaria strains found on the Cambodia–Thailand border are resistant to combination therapies that include artemisinins, and may therefore be untreatable.[91] Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years and the availability of substandard artemisinins likely drove the selection of the resistant phenotype.[92] Resistance to artemisinin has been detected in Cambodia, Myanmar, Thailand, and Vietnam,[93] and there has been emerging resistance in Laos.[94][95]
Prognosis

no data <10 0–100 100–500 500–1000 1000–1500 1500–2000 | 2000–2500 2500–2750 2750–3000 3000–3250 3250–3500 ≥3500 |
When properly treated, people with malaria can usually expect a complete recovery.[96] However, severe malaria can progress extremely rapidly and cause death within hours or days.[97] In the most severe cases of the disease, fatality rates can reach 20%, even with intensive care and treatment.[4] Over the longer term, developmental impairments have been documented in children who have suffered episodes of severe malaria.[98] Chronic infection without severe disease can occur in an immune-deficiency syndrome associated with a decreased responsiveness to Salmonella bacteria and the Epstein–Barr virus.[99]
During childhood, malaria causes anemia during a period of rapid brain development, and also direct brain damage resulting from cerebral malaria.[98] Some survivors of cerebral malaria have an increased risk of neurological and cognitive deficits, behavioural disorders, and epilepsy.[100] Malaria prophylaxis was shown to improve cognitive function and school performance in clinical trials when compared to placebo groups.[98]
Epidemiology

♦ Occurrence of chloroquine-resistant malaria
♦ No Plasmodium falciparum or chloroquine-resistance
♦ No malaria
The WHO estimates that in 2010 there were 219 million cases of malaria resulting in 660,000 deaths.[4][102] Others have estimated the number of cases at between 350 and 550 million for falciparum malaria[103] and deaths in 2010 at 1.24 million[104] up from 1.0 million deaths in 1990.[105] The majority of cases (65%) occur in children under 15 years old.[104] About 125 million pregnant women are at risk of infection each year; in Sub-Saharan Africa, maternal malaria is associated with up to 200,000 estimated infant deaths yearly.[18] There are about 10,000 malaria cases per year in Western Europe, and 1300–1500 in the United States.[106] About 900 people died from the disease in Europe between 1993 and 2003.[53] Both the global incidence of disease and resulting mortality have declined in recent years. According to the WHO, deaths attributable to malaria in 2010 were reduced by over a third from a 2000 estimate of 985,000, largely due to the widespread use of insecticide-treated nets and artemisinin-based combination therapies.[58] In 2012, there were 207 million cases of malaria. That year, the disease is estimated to have killed between 473,000 and 789,000 people, many of whom were children in Africa.[1]
Malaria is presently endemic in a broad band around the equator, in areas of the Americas, many parts of Asia, and much of Africa; in Sub-Saharan Africa, 85–90% of malaria fatalities occur.[107] An estimate for 2009 reported that countries with the highest death rate per 100,000 of population were Ivory Coast (86.15), Angola (56.93) and Burkina Faso (50.66).[108] A 2010 estimate indicated the deadliest countries per population were Burkina Faso, Mozambique and Mali.[104] The Malaria Atlas Project aims to map global endemic levels of malaria, providing a means with which to determine the global spatial limits of the disease and to assess disease burden.[109][110] This effort led to the publication of a map of P. falciparum endemicity in 2010.[111] As of 2010, about 100 countries have endemic malaria.[102][112] Every year, 125 million international travellers visit these countries, and more than 30,000 contract the disease.[53]
The geographic distribution of malaria within large regions is complex, and malaria-afflicted and malaria-free areas are often found close to each other.[113] Malaria is prevalent in tropical and subtropical regions because of rainfall, consistent high temperatures and high humidity, along with stagnant waters in which mosquito larvae readily mature, providing them with the environment they need for continuous breeding.[114] In drier areas, outbreaks of malaria have been predicted with reasonable accuracy by mapping rainfall.[115] Malaria is more common in rural areas than in cities. For example, several cities in the Greater Mekong Subregion of Southeast Asia are essentially malaria-free, but the disease is prevalent in many rural regions, including along international borders and forest fringes.[116] In contrast, malaria in Africa is present in both rural and urban areas, though the risk is lower in the larger cities.[117]
History
Although the parasite responsible for P. falciparum malaria has been in existence for 50,000–100,000 years, the population size of the parasite did not increase until about 10,000 years ago, concurrently with advances in agriculture[118] and the development of human settlements. Close relatives of the human malaria parasites remain common in chimpanzees. Some evidence suggests that the P. falciparum malaria may have originated in gorillas.[119]
References to the unique periodic fevers of malaria are found throughout recorded history, beginning in 2700 BC in China.[120] Hippocrates described periodic fevers, labelling them tertian, quartan, subtertian and quotidian.[121] The Roman Columella associated the disease with insects from swamps.[122] Malaria may have contributed to the decline of the Roman Empire,[123] and was so pervasive in Rome that it was known as the "Roman fever".[124] Several regions in ancient Rome were considered at-risk for the disease because of the favourable conditions present for malaria vectors. This included areas such as southern Italy, the island of Sardinia, the Pontine Marshes, the lower regions of coastal Etruria and the city of Rome along the Tiber River. The presence of stagnant water in these places was preferred by mosquitoes for breeding grounds. Irrigated gardens, swamp-like grounds, runoff from agriculture, and drainage problems from road construction led to the increase of standing water.[125]

The term malaria originates from Medieval 義大利語:mala aria — "bad air"; the disease was formerly called ague or marsh fever due to its association with swamps and marshland.[126] The term first appeared in the English literature about 1829.[127] Malaria was once common in most of Europe and North America,[128] where it is no longer endemic,[129] though imported cases do occur.[130]
Scientific studies on malaria made their first significant advance in 1880, when Charles Louis Alphonse Laveran—a French army doctor working in the military hospital of Constantine in Algeria—observed parasites inside the red blood cells of infected people for the first time. He therefore proposed that malaria is caused by this organism, the first time a protist was identified as causing disease.[131] For this and later discoveries, he was awarded the 1907 Nobel Prize for Physiology or Medicine. A year later, Carlos Finlay, a Cuban doctor treating people with yellow fever in Havana, provided strong evidence that mosquitoes were transmitting disease to and from humans.[132] This work followed earlier suggestions by Josiah C. Nott,[133] and work by Sir Patrick Manson, the "father of tropical medicine", on the transmission of filariasis.[134]
In April 1894, a Scottish physician Sir Ronald Ross visited Sir Patrick Manson at his house on Queen Anne Street, London. This visit was the start of four years of collaboration and fervent research that culminated in 1898 when Ross, who was working in the Presidency General Hospital in Calcutta, proved the complete life-cycle of the malaria parasite in mosquitoes. He thus proved that the mosquito was the vector for malaria in humans by showing that certain mosquito species transmit malaria to birds. He isolated malaria parasites from the salivary glands of mosquitoes that had fed on infected birds.[135] For this work, Ross received the 1902 Nobel Prize in Medicine. After resigning from the Indian Medical Service, Ross worked at the newly established Liverpool School of Tropical Medicine and directed malaria-control efforts in Egypt, Panama, Greece and Mauritius.[136] The findings of Finlay and Ross were later confirmed by a medical board headed by Walter Reed in 1900. Its recommendations were implemented by William C. Gorgas in the health measures undertaken during construction of the Panama Canal. This public-health work saved the lives of thousands of workers and helped develop the methods used in future public-health campaigns against the disease.[137]
The first effective treatment for malaria came from the bark of cinchona tree, which contains quinine. This tree grows on the slopes of the Andes, mainly in Peru. The indigenous peoples of Peru made a tincture of cinchona to control fever. Its effectiveness against malaria was found and the Jesuits introduced the treatment to Europe around 1640; by 1677, it was included in the London Pharmacopoeia as an antimalarial treatment.[138] It was not until 1820 that the active ingredient, quinine, was extracted from the bark, isolated and named by the French chemists Pierre Joseph Pelletier and Joseph Bienaimé Caventou.[139][140]
Quinine become the predominant malarial medication until the 1920s, when other medications began to be developed. In the 1940s, chloroquine replaced quinine as the treatment of both uncomplicated and severe malaria until resistance supervened, first in Southeast Asia and South America in the 1950s and then globally in the 1980s.[141] Artemisinins, discovered by Chinese scientist Tu Youyou and colleagues in the 1970s from the plant Artemisia annua, became the recommended treatment for P. falciparum malaria, administered in combination with other antimalarials as well as in severe disease.[142]
Plasmodium vivax was used between 1917 and the 1940s for malariotherapy—deliberate injection of malaria parasites to induce fever to combat certain diseases such as tertiary syphilis. In 1917, the inventor of this technique, Julius Wagner-Jauregg, received the Nobel Prize in Physiology or Medicine for his discoveries. The technique was dangerous, killing about 15% of patients, so it is no longer in use.[143]
The first pesticide used for indoor residual spraying was DDT.[144] Although it was initially used exclusively to combat malaria, its use quickly spread to agriculture. In time, pest control, rather than disease control, came to dominate DDT use, and this large-scale agricultural use led to the evolution of resistant mosquitoes in many regions. The DDT resistance shown by Anopheles mosquitoes can be compared to antibiotic resistance shown by bacteria. During the 1960s, awareness of the negative consequences of its indiscriminate use increased, ultimately leading to bans on agricultural applications of DDT in many countries in the 1970s.[65] Before DDT, malaria was successfully eliminated or controlled in tropical areas like Brazil and Egypt by removing or poisoning the breeding grounds of the mosquitoes or the aquatic habitats of the larva stages, for example by applying the highly toxic arsenic compound Paris Green to places with standing water.[145]
Malaria vaccines have been an elusive goal of research. The first promising studies demonstrating the potential for a malaria vaccine were performed in 1967 by immunizing mice with live, radiation-attenuated sporozoites, which provided significant protection to the mice upon subsequent injection with normal, viable sporozoites. Since the 1970s, there has been a considerable effort to develop similar vaccination strategies within humans.[146]
Society and culture
Economic impact
Malaria is not just a disease commonly associated with poverty: some evidence suggests that it is also a cause of poverty and a major hindrance to economic development.[6][7] Although tropical regions are most affected, malaria's furthest influence reaches into some temperate zones that have extreme seasonal changes. The disease has been associated with major negative economic effects on regions where it is widespread. During the late 19th and early 20th centuries, it was a major factor in the slow economic development of the American southern states.[147]
A comparison of average per capita GDP in 1995, adjusted for parity of purchasing power, between countries with malaria and countries without malaria gives a fivefold difference ($1,526 USD versus $8,268 USD). In the period 1965 to 1990, countries where malaria was common had an average per capita GDP that increased only 0.4% per year, compared to 2.4% per year in other countries.[148]
Poverty can increase the risk of malaria, since those in poverty do not have the financial capacities to prevent or treat the disease. In its entirety, the economic impact of malaria has been estimated to cost Africa US$12 billion every year. The economic impact includes costs of health care, working days lost due to sickness, days lost in education, decreased productivity due to brain damage from cerebral malaria, and loss of investment and tourism.[8] The disease has a heavy burden in some countries, where it may be responsible for 30–50% of hospital admissions, up to 50% of outpatient visits, and up to 40% of public health spending.[149]
Cerebral malaria is one of the leading causes of neurological disabilities in African children.[100] Studies comparing cognitive functions before and after treatment for severe malarial illness continued to show significantly impaired school performance and cognitive abilities even after recovery.[98] Consequently, severe and cerebral malaria have far-reaching socioeconomic consequences that extend beyond the immediate effects of the disease.[150]
Counterfeit and substandard drugs
Sophisticated counterfeits have been found in several Asian countries such as Cambodia,[151] China,[152] Indonesia, Laos, Thailand, and Vietnam, and are an important cause of avoidable death in those countries.[153] The WHO said that studies indicate that up to 40% of artesunate-based malaria medications are counterfeit, especially in the Greater Mekong region and have established a rapid alert system to enable information about counterfeit drugs to be rapidly reported to the relevant authorities in participating countries.[154] There is no reliable way for doctors or lay people to detect counterfeit drugs without help from a laboratory. Companies are attempting to combat the persistence of counterfeit drugs by using new technology to provide security from source to distribution.[155]
Another clinical and public health concern is the proliferation of substandard antimalarial medicines resulting from inappropriate concentration of ingredients, contamination with other drugs or toxic impurities, poor quality ingredients, poor stability and inadequate packaging.[156] A 2012 study demonstrated that roughly one-third of antimalarial medications in Southeast Asia and Sub-Saharan Africa failed chemical analysis, packaging analysis, or were falsified.[157]
War
Throughout history, the contraction of malaria has played a prominent role in the fates of government rulers, nation-states, military personnel, and military actions.[158] In 1910, Nobel Prize in Medicine-winner Ronald Ross (himself a malaria survivor), published a book titled The Prevention of Malaria that included a chapter titled "The Prevention of Malaria in War." The chapter's author, Colonel C. H. Melville, Professor of Hygiene at Royal Army Medical College in London, addressed the prominent role that malaria has historically played during wars: "The history of malaria in war might almost be taken to be the history of war itself, certainly the history of war in the Christian era. ... It is probably the case that many of the so-called camp fevers, and probably also a considerable proportion of the camp dysentery, of the wars of the sixteenth, seventeenth and eighteenth centuries were malarial in origin."[159]
Malaria was the most important health hazard encountered by U.S. troops in the South Pacific during World War II, where about 500,000 men were infected.[160] According to Joseph Patrick Byrne, "Sixty thousand American soldiers died of malaria during the African and South Pacific campaigns."[161]
Significant financial investments have been made to procure existing and create new anti-malarial agents. During World War I and World War II, inconsistent supplies of the natural anti-malaria drugs cinchona bark and quinine prompted substantial funding into research and development of other drugs and vaccines. American military organizations conducting such research initiatives include the Navy Medical Research Center, Walter Reed Army Institute of Research, and the U.S. Army Medical Research Institute of Infectious Diseases of the US Armed Forces.[162]
Additionally, initiatives have been founded such as Malaria Control in War Areas (MCWA), established in 1942, and its successor, the Communicable Disease Center (now known as the Centers for Disease Control and Prevention, or CDC) established in 1946. According to the CDC, MCWA "was established to control malaria around military training bases in the southern United States and its territories, where malaria was still problematic".[163]
Eradication efforts
Several notable attempts are being made to eliminate the parasite from sections of the world, or to eradicate it worldwide. In 2006, the organization Malaria No More set a public goal of eliminating malaria from Africa by 2015, and the organization plans to dissolve if that goal is accomplished.[164] Several malaria vaccines are in clinical trials, which are intended to provide protection for children in endemic areas and reduce the speed of transmission of the disease. 截至2012年[update], The Global Fund to Fight AIDS, Tuberculosis and Malaria has distributed 230 million insecticide-treated nets intended to stop mosquito-borne transmission of malaria.[165] The U.S.-based Clinton Foundation has worked to manage demand and stabilize prices in the artemisinin market.[166] Other efforts, such as the Malaria Atlas Project, focus on analysing climate and weather information required to accurately predict the spread of malaria based on the availability of habitat of malaria-carrying parasites.[109] The Malaria Policy Advisory Committee (MPAC) of the World Health Organization (WHO) was formed in 2012, "to provide strategic advice and technical input to WHO on all aspects of malaria control and elimination".[167] In November 2013, WHO and the malaria vaccine funders group set a goal to develop vaccines designed to interrupt malaria transmission with the long-term goal of malaria eradication.[168]
Malaria has been successfully eliminated or greatly reduced in certain areas. Malaria was once common in the United States and southern Europe, but vector control programs, in conjunction with the monitoring and treatment of infected humans, eliminated it from those regions. Several factors contributed, such as the draining of wetland breeding grounds for agriculture and other changes in water management practices, and advances in sanitation, including greater use of glass windows and screens in dwellings.[169] Malaria was eliminated from most parts of the USA in the early 20th century by such methods, and the use of the pesticide DDT and other means eliminated it from the remaining pockets in the South in the 1950s.[170] (see National Malaria Eradication Program) In Suriname, the disease has been cleared from its capital city and coastal areas through a three-pronged approach initiated by the Global Malaria Eradication program in 1955, involving: vector control through the use of DDT and IRS; regular collection of blood smears from the population to identify existing malaria cases; and providing chemotherapy to all affected individuals.[171] Bhutan is pursuing an aggressive malaria elimination strategy, and has achieved a 98.7% decline in microscopy-confirmed cases from 1994 to 2010. In addition to vector control techniques such as IRS in high-risk areas and thorough distribution of long-lasting ITNs, factors such as economic development and increasing access to health services have contributed to Bhutan's successes in reducing malaria incidence.[172]
Research
Vaccine
Immunity (or, more accurately, tolerance) to P. falciparum malaria does occur naturally, but only in response to years of repeated infection.[34] An individual can be protected from a P. falciparum infection if they receive about a thousand bites from mosquitoes that carry a version of the parasite rendered non-infective by a dose of X-ray irradiation.[173] An effective vaccine is not yet available for malaria, although several are under development.[174] The highly polymorphic nature of many P. falciparum proteins results in significant challenges to vaccine design. Vaccine candidates that target antigens on gametes, zygotes, or ookinetes in the mosquito midgut aim to block the transmission of malaria. These transmission-blocking vaccines induce antibodies in the human blood; when a mosquito takes a blood meal from a protected individual, these antibodies prevent the parasite from completing its development in the mosquito.[175] Other vaccine candidates, targeting the blood-stage of the parasite's life cycle, have been inadequate on their own.[176] For example, SPf66 was tested extensively in areas where the disease is common in the 1990s, but trials showed it to be insufficiently effective.[177] Several potential vaccines targeting the pre-erythrocytic stage of the parasite's life cycle are being developed, with RTS,S as a leading candidate;[173] it is expected to be licensed in 2015.[99] A US biotech company, Sanaria, is developing a pre-erythrocytic attenuated vaccine called PfSPZ that uses whole sporozoites to induce an immune response.[178] In 2006, the Malaria Vaccine Advisory Committee to the WHO outlined a "Malaria Vaccine Technology Roadmap" that has as one of its landmark objectives to "develop and license a first-generation malaria vaccine that has a protective efficacy of more than 50% against severe disease and death and lasts longer than one year" by 2015.[179]
Medications
Malaria parasites contain apicoplasts, organelles usually found in plants, complete with their own genomes. These apicoplasts are thought to have originated through the endosymbiosis of algae and play a crucial role in various aspects of parasite metabolism, such as fatty acid biosynthesis. Over 400 proteins have been found to be produced by apicoplasts and these are now being investigated as possible targets for novel anti-malarial drugs.[180]
With the onset of drug-resistant Plasmodium parasites, new strategies are being developed to combat the widespread disease. One such approach lies in the introduction of synthetic pyridoxal-amino acid adducts, which are taken up by the parasite and ultimately interfere with its ability to create several essential B vitamins.[181][182] Antimalarial drugs using synthetic metal-based complexes are attracting research interest.[183][184]
- (+)-SJ733: Part of a wider class of experimental drugs called spiroindolone. It inhibits the ATP4 protein of infected red blood cells that cause the cells to shrink and become rigid like the aging cells. This triggers the immune system to eliminate the infected cells from the system as demonstrated in a mouse model. As of 2014, a Phase 1 clinical trial to assess the safety profile in human is planned by the Howard Hughes Medical Institute.[185]
- NITD246 and NITD609: Also belonged to the class of spiroindolone and target the ATP4 protein. [185]
其他
A non-chemical vector control strategy involves genetic manipulation of malaria mosquitoes. Advances in genetic engineering technologies make it possible to introduce foreign DNA into the mosquito genome and either decrease the lifespan of the mosquito, or make it more resistant to the malaria parasite. Sterile insect technique is a genetic control method whereby large numbers of sterile males mosquitoes are reared and released. Mating with wild females reduces the wild population in the subsequent generation; repeated releases eventually eliminate the target population.[57]
Genomics is central to malaria research. With the sequencing of P. falciparum, one of its vectors Anopheles gambiae, and the human genome, the genetics of all three organisms in the malaria lifecycle can be studied.[186] Another new application of genetic technology is the ability to produce genetically modified mosquitoes that do not transmit malaria, potentially allowing biological control of malaria transmission.[187]
Other animals
Nearly 200 parasitic Plasmodium species have been identified that infect birds, reptiles, and other mammals,[188] and about 30 species naturally infect non-human primates.[189] Some malaria parasites that affect non-human primates (NHP) serve as model organisms for human malarial parasites, such as P. coatneyi (a model for P. falciparum) and P. cynomolgi (P. vivax). Diagnostic techniques used to detect parasites in NHP are similar to those employed for humans.[190] Malaria parasites that infect rodents are widely used as models in research, such as P. berghei.[191] Avian malaria primarily affects species of the order Passeriformes, and poses a substantial threat to birds of Hawaii, the Galapagos, and other archipelagoes. The parasite P. relictum is known to play a role in limiting the distribution and abundance of endemic Hawaiian birds. Global warming is expected to increase the prevalence and global distribution of avian malaria, as elevated temperatures provide optimal conditions for parasite reproduction.[192]
病理分段
根据疟原虫所处的环境和自身形态的不同,疟原虫的生命周期可以大致分为三个阶段:
- 红血球外阶段(Pre-erythrocytic stage):从寄生虫的孢子体进入宿主体内到其侵入红血球为止,这个过程一般需要8~9天,这一阶段患者无明显症状。这一阶段抗疟药对疟原虫没有作用。
- 无性血内阶段(Asexual blood stage):寄生虫在红血球内不断扩殖,这一阶段病人呈现显著的疟疾临床症状。由于疟原虫具有很明显的生理节奏,每隔一定的时间所有寄生在红血球中的寄生虫就会一同离开受感染细胞,寻找新的宿主细胞,这是造成疟疾患者高烧具有周期性的主要原因。另外,疟原虫可以改造受感染细胞的表面蛋白结构,使之可以贴附在血管内壁表面,免于受感染细胞在经过脾脏时受宿主免疫系统攻击而死亡。这一行为能够造成微细血管的阻塞,如果阻塞发生在脑部血管,患者很容易陷入昏迷状态。
- 有性繁殖阶段(Sexual stage),疟原虫在红血球内形成配子体,进而经蚊子吸食血液进入蚊子体内完成有性繁殖,再由蚊子叮咬进入新的宿主。对疾病传播的控制主要针对的就是这一阶段。
预防与治疗
人体免疫反应
人体对疟原虫有一定的免疫反应。先天免疫系统可以发现病原体和受感染的细胞并加以杀死。人体还可以产生抗体来对抗疟原虫和受感染细胞,这些免疫反应是造成病人病理反应的部分原因。实际上,人体对疟疾的抵抗能力是有一定效果的,疟疾死者多为10岁以下免疫功能并不完善的儿童。然而,疟原虫具有一套非常复杂的遗传系统,在宿主的免疫反应压力下,疟原虫可以通过基因重组的方式迅速改变它们及所寄生细胞的表面抗原,从而使得寄生虫在血液内不容易被根除。许多病人在病理特征减轻后进入寄生虫血症(Parasitaemia)阶段,此时免疫系统很难完全消灭疟原虫,病情进入慢性期。
疫苗
研究瘧疾疫苗的難度很高,現時有一些試驗中的疫苗。
药物
治療疟疾的藥物稱為抗瘧藥,會依疟疾的種類及嚴重程度選用不同的藥物。和解熱劑一起服用的效果還不是很明確 [78]。
抗疟疾最著名的药物是奎宁。口服和肌肉注射都有效。1969年-1972年间,屠呦呦领导的523课题组发现并从黄花蒿中提取了青蒿素[193],是由菊科植物黄花蒿[194]所提煉出來的倍半萜內酯化合物,是治療恶性疟原虫所引发的瘧疾的特效藥。
非重症的疟疾可以用口服藥物治療,最有效的療法是青蒿素配合其他抗瘧藥一起服用(稱為青蒿素聯合療法,簡稱ACT),可以減輕對單一藥物的抗藥性[79]。其他的抗瘧藥包括阿莫地喹、本芴醇、甲氟喹(mefloquine)或磺胺多辛/乙胺嘧啶[195]。另一建議的聯合療法是双氢青蒿素和喹哌[196][82]。若用在非重症疟疾,青蒿素聯合療法有效的比率約有90%[58]。若是治療孕婦的疟疾,世界衛生組織建議在懷孕初期(前三個月)用奎寧和克林黴素,在中後期則用青蒿素聯合療法[83]在2000年左右,在東南亞已經出現對青蒿素有抗藥性的疟疾[85] 。
传播途径
雌按蚊叮人传播疟疾,但並非所有蚊都能传播疟疾,大部分蚊抗疟原虫,只有按蚊属(Anopheles spp.)下的部分种类,易受疟原虫。
預防方法
填平濕地及破壞原始森林是一種預防方法,但是此種破壞生態的方法會造成更多問題,在這些地區的瘧蚊(按蚊)是難以根治的,人類避免受瘧疾感染,主要是避免受蚊子的叮咬。
- 避免在原始森林和河澗逗留。
- 使用DDT等殺蟲劑,但是要小心破壞生態及蚊蟲抗藥性等問題。
- 到瘧疾肆虐地區之前應該先做好防疫措施,例如請醫師開立奎寧類藥物服用預防。
- 若需要到郊外或森林,盡量避免在晨早或黃昏時按蚊活躍期間。
- 穿著淺色長袖衣服、長褲、帽子,減少皮膚外露。
- 使用蚊帳、蚊香等滅蚊措施;浸泡過殺蟲劑的蚊帳效果更好。
- 使用含DEET水劑的防蚊液,塗在外露皮膚上,出汗後需要再次塗上。
- 在滅絕按蚊的幼蟲孑孓方面,可以將河道的雜草清除,和將部份河道的障礙物如石頭移走,令河道的流量加快。
- 在室內可將滅蚊劑噴在房間的牆壁。因為蚊習性於叮人血後依附在牆上休息消化,殘留在牆壁上的滅蚊劑可以殺掉蚊子。
- 若到外地旅遊,應詳盡紀錄所到地方,以防當自己懷疑染疾時可向醫護人員提供可靠資料。
- 东南亚虽然是仍然存在疟疾的地理区域,但疫情主要集中在中南半岛内陆山区和马来群岛偏远岛屿,新加坡、曼谷、吉隆坡、清迈等大都市以及巴厘岛、普吉岛、吴哥窟等热门旅游景点并无疟疾疫情,若不是进行丛林探险的背包客则不必在出发前接种疫苗。
- 南亚次大陆和撒哈拉以南的非洲大陆为最易感染疟疾的地理区域,即便是前往孟买、拉各斯、金沙萨等大城市也有必要在出发前接种疟疾疫苗。
- 南美洲的疟疾疫情主要集中在纬度和海拔较低的圭亚那、苏里南和巴西东北部,库斯科、马丘比丘、里约热内卢、科隆群岛等热门旅游景点均无疟疾疫情,无须在行前接种疫苗。
- 除多米尼加共和国的贫民区及海地共和国外,其余的加勒比岛国均无疟疾疫情。
參見
参考文献
- ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Malaria Fact sheet N°94. WHO. March 2014 [28 August 2014]. 引用错误:带有name属性“WHO2014”的
<ref>
标签用不同内容定义了多次 - ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Caraballo, Hector. Emergency Department Management Of Mosquito-Borne Illness: Malaria, Dengue, And West Nile Virus. Emergency Medicine Practice. May 2014, 16 (5).
- ^ Caraballo H. Emergency department management of mosquito-borne illness: Malaria, dengue, and west nile virus. Emergency Medicine Practice. 2014, 16 (5).
- ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Nadjm B, Behrens RH. Malaria: An update for physicians. Infectious Disease Clinics of North America. 2012, 26 (2): 243–59. PMID 22632637. doi:10.1016/j.idc.2012.03.010.
- ^ 5.0 5.1 Organization, World Health. Guidelines for the treatment of malaria 2nd ed. Geneva: World Health Organization. 2010: ix. ISBN 9789241547925.
- ^ 6.0 6.1 Gollin D, Zimmermann C. Malaria: Disease Impacts and Long-Run Income Differences (PDF) (Report). Institute for the Study of Labor. August 2007.
- ^ 7.0 7.1 Worrall E, Basu S, Hanson K. Is malaria a disease of poverty? A review of the literature. Tropical Health and Medicine. 2005, 10 (10): 1047–59. PMID 16185240. doi:10.1111/j.1365-3156.2005.01476.x.
- ^ 8.0 8.1 Greenwood BM, Bojang K, Whitty CJ, Targett GA. Malaria. Lancet. 2005, 365 (9469): 1487–98. PMID 15850634. doi:10.1016/S0140-6736(05)66420-3.
- ^ 9.0 9.1 WHO. World Malaria Report 2014. Geneva, Switzerland: World Health Organization. 2014: 32–42. ISBN 978-92-4156483-0.
- ^ GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 17 December 2014, 385 (9963): 117–171. PMC 4340604
. PMID 25530442. doi:10.1016/S0140-6736(14)61682-2.
- ^ Factsheet on the World Malaria Report 2014. World Health Orgnization. 2014 [2 February 2015].
- ^ 12.0 12.1 Fairhurst RM, Wellems TE. Chapter 275. Plasmodium species (malaria). Mandell GL, Bennett JE, Dolin R (eds) (编). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2 7th. Philadelphia, Pennsylvania: Churchill Livingstone/Elsevier. 2010: 3437–62. ISBN 978-0-443-06839-3.
- ^ 13.0 13.1 13.2 13.3 13.4 Bartoloni A, Zammarchi L. Clinical aspects of uncomplicated and severe malaria. Mediterranean Journal of Hematology and Infectious Diseases. 2012, 4 (1): e2012026. PMC 3375727
. PMID 22708041. doi:10.4084/MJHID.2012.026.
- ^ Beare NA, Taylor TE, Harding SP, Lewallen S, Molyneux ME. Malarial retinopathy: A newly established diagnostic sign in severe malaria. American Journal of Tropical Medicine and Hygiene. 2006, 75 (5): 790–7. PMC 2367432
. PMID 17123967.
- ^ Korenromp E, Williams B, de Vlas S, Gouws E, Gilks C, Ghys P, Nahlen B. Malaria attributable to the HIV-1 epidemic, sub-Saharan Africa. Emerging Infectious Diseases. 2005, 11 (9): 1410–9. PMC 3310631
. PMID 16229771. doi:10.3201/eid1109.050337.
- ^ Beare NA, Lewallen S, Taylor TE, Molyneux ME. Redefining cerebral malaria by including malaria retinopathy. Future Microbiology. 2011, 6 (3): 349–55. PMC 3139111
. PMID 21449844. doi:10.2217/fmb.11.3.
- ^ Davidson's Principles and Practice of Medicine/21st/351
- ^ 18.0 18.1 Hartman TK, Rogerson SJ, Fischer PR. The impact of maternal malaria on newborns. Annals of Tropical Paediatrics. 2010, 30 (4): 271–82. PMID 21118620. doi:10.1179/146532810X12858955921032.
- ^ Rijken MJ, McGready R, Boel ME, Poespoprodjo R, Singh N, Syafruddin D, Rogerson S, Nosten F. Malaria in pregnancy in the Asia-Pacific region. Lancet Infectious Diseases. 2012, 12 (1): 75–88. PMID 22192132. doi:10.1016/S1473-3099(11)70315-2.
- ^ CHU Hôpitaux de Rouen. Fréquence et origine des cas de paludisme. .chu-rouen.fr. [2010-08-24].
- ^ Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale—the "bashful" malaria parasites. Trends in Parasitology. 2007, 23 (6): 278–83. PMC 3728836
. PMID 17459775. doi:10.1016/j.pt.2007.04.009.
- ^ 22.0 22.1 Collins WE. Plasmodium knowlesi: A malaria parasite of monkeys and humans. Annual Review of Entomology. 2012, 57: 107–21. PMID 22149265. doi:10.1146/annurev-ento-121510-133540.
- ^ Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malaria Journal. 2012, 11: 14. PMC 3298510
. PMID 22233585. doi:10.1186/1475-2875-11-14.
- ^ Collins WE, Barnwell JW. Plasmodium knowlesi: finally being recognized. Journal of Infectious Diseases. 2009, 199 (8): 1107–8. PMID 19284287. doi:10.1086/597415.
- ^ Parham PE, Christiansen-Jucht C, Pople D, Michael E. Understanding and modelling the impact of climate change on infectious diseases. Blanco J, Kheradmand H (eds.) (编). Climate Change – Socioeconomic Effects. 2011: 43–66. ISBN 978-9533074115.
- ^ Climate Change And Infectious Diseases (PDF). CLIMATE CHANGE AND HUMAN HEALTH — RISK AND RESPONSES. World Health Organization.
- ^ Schlagenhauf-Lawlor 2008,第70–1頁
- ^ Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. Journal of Cell Biology. 2012, 198 (6): 961–71. PMC 3444787
. PMID 22986493. doi:10.1083/jcb.201206112.
- ^ Owusu-Ofori AK, Parry C, Bates I. Transfusion-transmitted malaria in countries where malaria is endemic: A review of the literature from sub-Saharan Africa. Clinical Infectious Diseases. 2010, 51 (10): 1192–8. PMID 20929356. doi:10.1086/656806.
- ^ doi:10.1086/501557
本引用來源將由机器人自動扩充,您也可以手動擴充。 - ^ WHO 2010,第vi頁
- ^ 32.0 32.1 White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria Journal. 2011, 10: 297. PMC 3228849
. PMID 21989376. doi:10.1186/1475-2875-10-297.
- ^ WHO 2010,第17頁
- ^ 34.0 34.1 Tran TM, Samal B, Kirkness E, Crompton PD. Systems immunology of human malaria. Trends in Parasitology. 2012, 28 (6): 248–57. PMC 3361535
. PMID 22592005. doi:10.1016/j.pt.2012.03.006.
- ^ 35.0 35.1 35.2 Bledsoe GH. Malaria primer for clinicians in the United States. Southern Medical Journal. 2005, 98 (12): 1197–204; quiz 1205, 1230. PMID 16440920. doi:10.1097/01.smj.0000189904.50838.eb.
- ^ Vaughan AM, Aly AS, Kappe SH. Malaria parasite pre-erythrocytic stage infection: Gliding and hiding. Cell Host & Microbe. 2008, 4 (3): 209–18. PMC 2610487
. PMID 18779047. doi:10.1016/j.chom.2008.08.010.
- ^ Richter J, Franken G, Mehlhorn H, Labisch A, Häussinger D. What is the evidence for the existence of Plasmodium ovale hypnozoites?. Parasitology Research. 2010, 107 (6): 1285–90. PMID 20922429. doi:10.1007/s00436-010-2071-z.
- ^ Tilley L, Dixon MW, Kirk K. The Plasmodium falciparum-infected red blood cell. International Journal of Biochemistry and Cell Biology. 2011, 43 (6): 839–42. PMID 21458590. doi:10.1016/j.biocel.2011.03.012.
- ^ Mens PF, Bojtor EC, Schallig HDFH. Molecular interactions in the placenta during malaria infection. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2012, 152 (2): 126–32. PMID 20933151. doi:10.1016/j.ejogrb.2010.05.013.
- ^ Rénia L, Wu Howland S, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, Russell B, Ng LF. Cerebral malaria: mysteries at the blood-brain barrier. Virulence. 2012, 3 (2): 193–201. PMC 3396698
. PMID 22460644. doi:10.4161/viru.19013.
- ^ Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. American Journal of Human Genetics. 2005, 77 (2): 171–92. PMC 1224522
. PMID 16001361. doi:10.1086/432519.
- ^ 42.0 42.1 Hedrick PW. Population genetics of malaria resistance in humans. Heredity. 2011, 107 (4): 283–304. PMC 3182497
. PMID 21427751. doi:10.1038/hdy.2011.16.
- ^ Weatherall DJ. Genetic variation and susceptibility to infection: The red cell and malaria. British Journal of Haematology. 2008, 141 (3): 276–86. PMID 18410566. doi:10.1111/j.1365-2141.2008.07085.x.
- ^ 44.0 44.1 Bhalla A, Suri V, Singh V. Malarial hepatopathy. Journal of Postgraduate Medicine. 2006, 52 (4): 315–20. PMID 17102560.
- ^ Abba K, Deeks JJ, Olliaro P, Naing CM, Jackson SM, Takwoingi Y, Donegan S, Garner P. Abba, Katharine , 编. Rapid diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic countries. Cochrane Database of Systematic Reviews. 2011, (7): CD008122. PMID 21735422. doi:10.1002/14651858.CD008122.pub2.
- ^ Kattenberg JH, Ochodo EA, Boer KR, Schallig HD, Mens PF, Leeflang MM. Systematic review and meta-analysis: Rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women. Malaria Journal. 2011, 10: 321. PMC 3228868
. PMID 22035448. doi:10.1186/1475-2875-10-321.
- ^ 47.0 47.1 Wilson ML. Malaria rapid diagnostic tests. Clinical Infectious Diseases. 2012, 54 (11): 1637–41. PMID 22550113. doi:10.1093/cid/cis228.
- ^ Perkins MD, Bell DR. Working without a blindfold: The critical role of diagnostics in malaria control. Malaria Journal. 2008, 1 (Suppl 1): S5. PMC 2604880
. PMID 19091039. doi:10.1186/1475-2875-7-S1-S5.
- ^ WHO 2010,第35頁
- ^ WHO 2010,第v頁
- ^ World Health Organization. Malaria. The First Ten Years of the World Health Organization (PDF). World Health Organization. 1958: 172–87.
- ^ Sabot O, Cohen JM, Hsiang MS, Kahn JG, Basu S, Tang L, Zheng B, Gao Q, Zou L, Tatarsky A, Aboobakar S, Usas J, Barrett S, Cohen JL, Jamison DT, Feachem RG. Costs and financial feasibility of malaria elimination. Lancet. 2010, 376 (9752): 1604–15. PMC 3044845
. PMID 21035839. doi:10.1016/S0140-6736(10)61355-4.
- ^ 53.0 53.1 53.2 Kajfasz P. Malaria prevention. International Maritime Health. 2009, 60 (1–2): 67–70. PMID 20205131.
- ^ Lengeler C. Lengeler, Christian , 编. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database of Systematic Reviews. 2004, (2): CD000363. PMID 15106149. doi:10.1002/14651858.CD000363.pub2.
- ^ Tanser FC, Lengeler C, Sharp BL. Lengeler, Christian , 编. Indoor residual spraying for preventing malaria. Cochrane Database of Systematic Reviews. 2010, (4): CD006657. PMID 20393950. doi:10.1002/14651858.CD006657.pub2.
- ^ Palmer, J. WHO gives indoor use of DDT a clean bill of health for controlling malaria. WHO.
- ^ 57.0 57.1 Raghavendra K, Barik TK, Reddy BP, Sharma P, Dash AP. Malaria vector control: From past to future. Parasitology Research. 2011, 108 (4): 757–79. PMID 21229263. doi:10.1007/s00436-010-2232-0.
- ^ 58.0 58.1 58.2 58.3 Howitt P, Darzi A, Yang GZ, Ashrafian H, Atun R, Barlow J, Blakemore A, Bull AM, Car J, Conteh L, Cooke GS, Ford N, Gregson SA, Kerr K, King D, Kulendran M, Malkin RA, Majeed A, Matlin S, Merrifield R, Penfold HA, Reid SD, Smith PC, Stevens MM, Templeton MR, Vincent C, Wilson E. Technologies for global health. The Lancet. 2012, 380 (9840): 507–35. PMID 22857974. doi:10.1016/S0140-6736(12)61127-1.
- ^ Miller JM, Korenromp EL, Nahlen BL, W Steketee R. Estimating the number of insecticide-treated nets required by African households to reach continent-wide malaria coverage targets. Journal of the American Medical Association. 2007, 297 (20): 2241–50. PMID 17519414. doi:10.1001/jama.297.20.2241.
- ^ Noor AM, Mutheu JJ, Tatem AJ, Hay SI, Snow RW. Insecticide-treated net coverage in Africa: Mapping progress in 2000–07. Lancet. 2009, 373 (9657): 58–67. PMC 2652031
. PMID 19019422. doi:10.1016/S0140-6736(08)61596-2.
- ^ Schlagenhauf-Lawlor 2008,第215頁
- ^ Instructions for treatment and use of insecticide-treated mosquito nets (pdf). World Health Organization. 2002: 34.
- ^ Enayati A, Hemingway J. Malaria management: Past, present, and future. Annual Review of Entomology. 2010, 55: 569–91. PMID 19754246. doi:10.1146/annurev-ento-112408-085423.
- ^ Indoor Residual Spraying: Use of Indoor Residual Spraying for Scaling Up Global Malaria Control and Elimination. WHO Position Statement (PDF) (Report). World Health Organization. 2006.
- ^ 65.0 65.1 van den Berg H. Global status of DDT and its alternatives for use in vector control to prevent disease. Environmental Health Perspectives. 2009, 117 (11): 1656–63. PMC 2801202
. PMID 20049114. doi:10.1289/ehp.0900785.
- ^ Pates H, Curtis C. Mosquito behaviour and vector control. Annual Review of Entomology. 2005, 50: 53–70. PMID 15355233. doi:10.1146/annurev.ento.50.071803.130439.
- ^ Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, Bottomley C, Lindsay SW. Mosquito larval source management for controlling malaria. Cochrane Database of Systematic Reviews. 2013, 8: CD008923. PMID 23986463. doi:10.1002/14651858.CD008923.pub2.
- ^ Enayati AA, Hemingway J, Garner P. Enayati, Ahmadali , 编. Electronic mosquito repellents for preventing mosquito bites and malaria infection (PDF). Cochrane Database of Systematic Reviews. 2007, (2): CD005434. PMID 17443590. doi:10.1002/14651858.CD005434.pub2.
- ^ Lalloo DG, Olukoya P, Olliaro P. Malaria in adolescence: Burden of disease, consequences, and opportunities for intervention. Lancet Infectious Diseases. 2006, 6 (12): 780–93. PMID 17123898. doi:10.1016/S1473-3099(06)70655-7.
- ^ Mehlhorn H (编). Disease Control, Methods. Encyclopedia of Parasitology 3rd. Springer: 362–6. 2008. ISBN 978-3-540-48997-9.
- ^ Bardají A, Bassat Q, Alonso PL, Menéndez C. Intermittent preventive treatment of malaria in pregnant women and infants: making best use of the available evidence. Expert Opinion on Pharmacotherapy. 2012, 13 (12): 1719–36. PMID 22775553. doi:10.1517/14656566.2012.703651.
- ^ Meremikwu MM, Donegan S, Sinclair D, Esu E, Oringanje C. Meremikwu, Martin M , 编. Intermittent preventive treatment for malaria in children living in areas with seasonal transmission. Cochrane Database of Systematic Reviews. 2012, 2 (2): CD003756. PMID 22336792. doi:10.1002/14651858.CD003756.pub4.
- ^ 73.0 73.1 73.2 Jacquerioz FA, Croft AM. Jacquerioz FA , 编. Drugs for preventing malaria in travellers. Cochrane Database of Systematic Reviews. 2009, (4): CD006491. PMID 19821371. doi:10.1002/14651858.CD006491.pub2.
- ^ Freedman DO. Clinical practice. Malaria prevention in short-term travelers. New England Journal of Medicine. 2008, 359 (6): 603–12. PMID 18687641. doi:10.1056/NEJMcp0803572.
- ^ Fernando SD, Rodrigo C, Rajapakse S. Chemoprophylaxis in malaria: Drugs, evidence of efficacy and costs. Asian Pacific Journal of Tropical Medicine. 2011, 4 (4): 330–6. PMID 21771482. doi:10.1016/S1995-7645(11)60098-9.
- ^ Turschner S, Efferth T. Drug resistance in Plasmodium: Natural products in the fight against malaria. Mini Reviews in Medicinal Chemistry. 2009, 9 (2): 206–14. PMID 19200025. doi:10.2174/138955709787316074.
- ^ Radeva-Petrova, D; Kayentao, K; Ter Kuile, FO; Sinclair, D; Garner, P. Drugs for preventing malaria in pregnant women in endemic areas: any drug regimen versus placebo or no treatment.. The Cochrane database of systematic reviews. Oct 10, 2014, 10: CD000169. PMID 25300703. doi:10.1002/14651858.CD000169.pub3.
- ^ 78.0 78.1 Meremikwu MM, Odigwe CC, Akudo Nwagbara B, Udoh EE. Meremikwu, Martin M , 编. Antipyretic measures for treating fever in malaria. Cochrane Database of Systematic Reviews. 2012, 9: CD002151. PMID 22972057. doi:10.1002/14651858.CD002151.pub2.
- ^ 79.0 79.1 Kokwaro G. Ongoing challenges in the management of malaria. Malaria Journal. 2009, 8 (Suppl 1): S2. PMC 2760237
. PMID 19818169. doi:10.1186/1475-2875-8-S1-S2.
- ^ WHO 2010,第75–86頁
- ^ WHO 2010,第21頁
- ^ 82.0 82.1 Keating GM. Dihydroartemisinin/piperaquine: A review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs. 2012, 72 (7): 937–61. PMID 22515619. doi:10.2165/11203910-000000000-00000.
- ^ 83.0 83.1 Manyando C, Kayentao K, D'Alessandro U, Okafor HU, Juma E, Hamed K. A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy. Malaria Journal. 2011, 11: 141. PMC 3405476
. PMID 22548983. doi:10.1186/1475-2875-11-141.
- ^ O'Brien C, Henrich PP, Passi N, Fidock DA. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Current Opinion in Infectious Diseases. 2011, 24 (6): 570–7. PMC 3268008
. PMID 22001944. doi:10.1097/QCO.0b013e32834cd3ed.
- ^ 85.0 85.1 Fairhurst RM, Nayyar GM, Breman JG, Hallett R, Vennerstrom JL, Duong S, Ringwald P, Wellems TE, Plowe CV, Dondorp AM. Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. American Journal of Tropical Medicine and Hygiene. 2012, 87 (2): 231–41. PMC 3414557
. PMID 22855752. doi:10.4269/ajtmh.2012.12-0025.
- ^ Waters NC, Edstein MD. 8-Aminoquinolines: Primaquine and tafenoquine. Staines HM, Krishna S (eds) (编). Treatment and Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use. Springer. 2012: 69–93. ISBN 978-3-0346-0479-6.
- ^ Sinclair D, Donegan S, Isba R, Lalloo DG. Sinclair, David , 编. Artesunate versus quinine for treating severe malaria. Cochrane Database of Systematic Reviews. 2012, 6: CD005967. PMID 22696354. doi:10.1002/14651858.CD005967.pub4.
- ^ Sarkar PK, Ahluwalia G, Vijayan VK, Talwar A. Critical care aspects of malaria. Journal of Intensive Care Medicine. 2009, 25 (2): 93–103. PMID 20018606. doi:10.1177/0885066609356052.
- ^ Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh. Challenges of drug-resistant malaria. Parasite. 2014, 21: 61. ISSN 1776-1042. PMID 25402734. doi:10.1051/parasite/2014059.
- ^ White NJ. Qinghaosu (artemisinin): The price of success. Science. 2008, 320 (5874): 330–4. PMID 18420924. doi:10.1126/science.1155165.
- ^ Wongsrichanalai C, Meshnick SR. Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia–Thailand border. Emerging Infectious Diseases. 2008, 14 (5): 716–9. PMC 2600243
. PMID 18439351. doi:10.3201/eid1405.071601.
- ^ Dondorp AM, Yeung S, White L, Nguon C, Day NPJ, Socheat D, von Seidlein L. Artemisinin resistance: Current status and scenarios for containment. Nature Reviews Microbiology. 2010, 8 (4): 272–80. PMID 20208550. doi:10.1038/nrmicro2331.
- ^ World Health Organization. Q&A on artemisinin resistance. WHO malaria publications. 2013.
- ^ Briggs, Helen (30 July 2014) Call for 'radical action' on drug-resistant malaria BBC News, health, Retrieved 30 July 2013
- ^ Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P; et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine. 2014, 371 (5): 411–23. PMID 25075834. doi:10.1056/NEJMoa1314981.
- ^ Frequently Asked Questions (FAQs): If I get malaria, will I have it for the rest of my life?. US Centers for Disease Control and Prevention. February 8, 2010 [2012-05-14].
- ^ Trampuz A, Jereb M, Muzlovic I, Prabhu R. Clinical review: Severe malaria. Critical Care. 2003, 7 (4): 315–23. PMC 270697
. PMID 12930555. doi:10.1186/cc2183.
- ^ 98.0 98.1 98.2 98.3 Fernando SD, Rodrigo C, Rajapakse S. The 'hidden' burden of malaria: Cognitive impairment following infection. Malaria Journal. 2010, 9: 366. PMC 3018393
. PMID 21171998. doi:10.1186/1475-2875-9-366.
- ^ 99.0 99.1 Riley EM, Stewart VA. Immune mechanisms in malaria: New insights in vaccine development. Nature Medicine. 2013, 19 (2): 168–78. PMID 23389617. doi:10.1038/nm.3083.
- ^ 100.0 100.1 Idro R, Marsh K, John CC, Newton CRJ. Cerebral malaria: Mechanisms of brain injury and strategies for improved neuro-cognitive outcome. Pediatric Research. 2010, 68 (4): 267–74. PMC 3056312
. PMID 20606600. doi:10.1203/PDR.0b013e3181eee738.
- ^ Malaria. US Centers for Disease Control and Prevention. April 15, 2010 [2012-05-02].
- ^ 102.0 102.1 World Malaria Report 2012 (PDF) (Report). World Health Organization.
- ^ Olupot-Olupot P, Maitland, K. Management of severe malaria: Results from recent trials. Advances in Experimental Medicine and Biology. Advances in Experimental Medicine and Biology. 2013, 764: 241–50. ISBN 978-1-4614-4725-2. PMID 23654072. doi:10.1007/978-1-4614-4726-9_20.
- ^ 104.0 104.1 104.2 Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet. 2012, 379 (9814): 413–31. PMID 22305225. doi:10.1016/S0140-6736(12)60034-8.
- ^ Lozano R; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012, 380 (9859): 2095–128. PMID 23245604. doi:10.1016/S0140-6736(12)61728-0.
- ^ Taylor WR, Hanson J, Turner GD, White NJ, Dondorp AM. Respiratory manifestations of malaria. Chest. 2012, 142 (2): 492–505. PMID 22871759. doi:10.1378/chest.11-2655.
- ^ Layne SP. Principles of Infectious Disease Epidemiology (PDF). EPI 220. UCLA Department of Epidemiology. [2007-06-15]. (原始内容 (PDF)存档于2006-02-20).
- ^ Provost C. World Malaria Day: Which countries are the hardest hit? Get the full data. The Guardian. April 25, 2011 [2012-05-03].
- ^ 109.0 109.1 Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malaria Journal. 2007, 6 (1): 17. PMC 1805762
. PMID 17306022. doi:10.1186/1475-2875-6-17.
- ^ Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, Snow RW. Mueller, Ivo , 编. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Medicine. 2010, 7 (6): e1000290. PMC 2885984
. PMID 20563310. doi:10.1371/journal.pmed.1000290.
- ^ Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, Tatem AJ, Hay SI. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal. 2011, 10 (1): 378. PMC 3274487
. PMID 22185615. doi:10.1186/1475-2875-10-378.
- ^ Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, Sabot O, Rodriguez MH, Abeyasinghe RR, Ghebreyesus TA, Snow RW. Shrinking the malaria map: progress and prospects. Lancet. 2010, 376 (9752): 1566–78. PMC 3044848
. PMID 21035842. doi:10.1016/S0140-6736(10)61270-6.
- ^ Greenwood B, Mutabingwa T. Malaria in 2002. Nature. 2002, 415 (6872): 670–2. PMID 11832954. doi:10.1038/415670a.
- ^ Jamieson A, Toovey S, Maurel M. Malaria: A Traveller's Guide. Struik. 2006: 30. ISBN 978-1-77007-353-1.
- ^ Abeku TA. Response to malaria epidemics in Africa. Emerging Infectious Diseases. 2007, 14 (5): 681–6. PMC 2738452
. PMID 17553244. doi:10.3201/eid1305.061333.
- ^ Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, Fan Q, Fang Q, Jongwutiwes S, Parker D, Sirichaisinthop J, Kyaw MP, Su XZ, Yang H, Yang Z, Wang B, Xu J, Zheng B, Zhong D, Zhou G. Malaria in the Greater Mekong Subregion: Heterogeneity and complexity. Acta Tropica. 2012, 121 (3): 227–39. PMC 3132579
. PMID 21382335. doi:10.1016/j.actatropica.2011.02.016.
- ^ Machault V, Vignolles C, Borchi F, Vounatsou P, Pages F, Briolant S, Lacaux JP, Rogier C. The use of remotely sensed environmental data in the study of malaria (PDF). Geospatial Health. 2011, 5 (2): 151–68. PMID 21590665. doi:10.4081/gh.2011.167.
- ^ Harper K, Armelagos G. The changing disease-scape in the third epidemiological transition. International Journal of Environmental Research and Public Health. 2011, 7 (2): 675–97. PMC 2872288
. PMID 20616997. doi:10.3390/ijerph7020675.
- ^ Prugnolle F, Durand P, Ollomo B, Duval L, Ariey F, Arnathau C, Gonzalez JP, Leroy E, Renaud F. Manchester, Marianne , 编. A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent. PLoS Pathogens. 2011, 7 (2): e1001283. PMC 3044689
. PMID 21383971. doi:10.1371/journal.ppat.1001283.
- ^ Cox F. History of human parasitology. Clinical Microbiology Reviews. 2002, 15 (4): 595–612. PMC 126866
. PMID 12364371. doi:10.1128/CMR.15.4.595-612.2002.
- ^ Strong, Richard P. Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases Seventh. York, PA: The Blakiston company. 1944: 3.
- ^ Strong, Richard P. Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases Seventh. York, PA: The Blakiston company. 1944: 3.
- ^ DNA clues to malaria in ancient Rome. BBC News. February 20, 2001., in reference to Sallares R, Gomzi S. Biomolecular archaeology of malaria. Ancient Biomolecules. 2001, 3 (3): 195–213. OCLC 538284457.
- ^ Sallares R. Malaria and Rome: A History of Malaria in Ancient Italy. Oxford University Press. 2002. ISBN 978-0-19-924850-6. doi:10.1093/acprof:oso/9780199248506.001.0001.
- ^ Hays JN. Epidemics and Pandemics: Their Impacts on Human History. Santa Barbara, California: ABC-CLIO. 2005: 11. ISBN 978-1-85109-658-9.
- ^ Reiter, P. From Shakespeare to Defoe: malaria in England in the Little Ice Age.. Emerging Infectious Diseases. 1999, 6 (1): 1–11. PMC 2627969
. PMID 10653562. doi:10.3201/eid0601.000101.
- ^ Strong, Richard P. Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases Seventh. York, PA: The Blakiston company. 1944: 3.
- ^ Lindemann M. Medicine and Society in Early Modern Europe. Cambridge University Press. 1999: 62. ISBN 978-0-521-42354-0.
- ^ Gratz NG, World Health Organization. The Vector- and Rodent-borne Diseases of Europe and North America: Their Distribution and Public Health Burden. Cambridge University Press. 2006: 33. ISBN 978-0-521-85447-4.
- ^ Webb Jr JLA. Humanity's Burden: A Global History of Malaria. Cambridge University Press. 2009. ISBN 978-0-521-67012-8.
- ^ The Nobel Prize in Physiology or Medicine 1907: Alphonse Laveran. The Nobel Foundation. [2012-05-14].
- ^ Tan SY, Sung H. Carlos Juan Finlay (1833–1915): Of mosquitoes and yellow fever (PDF). Singapore Medical Journal. 2008, 49 (5): 370–1. PMID 18465043.
- ^ Chernin E. Josiah Clark Nott, insects, and yellow fever. Bulletin of the New York Academy of Medicine. 1983, 59 (9): 790–802. PMC 1911699
. PMID 6140039.
- ^ Chernin E. Patrick Manson (1844–1922) and the transmission of filariasis. American Journal of Tropical Medicine and Hygiene. 1977, 26 (5 Pt 2 Suppl): 1065–70. PMID 20786.
- ^ The Nobel Prize in Physiology or Medicine 1902: Ronald Ross. The Nobel Foundation. [2012-05-14].
- ^ Ross and the Discovery that Mosquitoes Transmit Malaria Parasites. CDC Malaria website. [2012-06-14]. (原始内容存档于2007-06-02).
- ^ Simmons JS. Malaria in Panama. Ayer Publishing. 1979. ISBN 978-0-405-10628-6.
- ^ Kaufman TS, Rúveda EA. The quest for quinine: Those who won the battles and those who won the war. Angewandte Chemie (International Edition in English). 2005, 44 (6): 854–85. PMID 15669029. doi:10.1002/anie.200400663.
- ^ Pelletier PJ, Caventou JB. Des recherches chimiques sur les Quinquinas [Chemical research on quinquinas]. Annales de Chimie et de Physique. 1820, 15: 337–65 (French).
- ^ Kyle R, Shampe M. Discoverers of quinine. Journal of the American Medical Association. 1974, 229 (4): 462. PMID 4600403. doi:10.1001/jama.229.4.462.
- ^ Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D'Alessandro U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malaria Journal. 2011, 10 (1): 144. PMC 3121651
. PMID 21609473. doi:10.1186/1475-2875-10-144.
- ^ Hsu E. Reflections on the 'discovery' of the antimalarial qinghao. British Journal of Clinical Pharmacology. 2006, 61 (3): 666–70. PMC 1885105
. PMID 16722826. doi:10.1111/j.1365-2125.2006.02673.x.
- ^ Vogel V. Malaria as a lifesaving therapy. Science. 2013, 342 (6159): 684–7. doi:10.1126/science.342.6159.684.
- ^ Eradication of Malaria in the United States (1947–1951). US Centers for Disease Control and Prevention. February 8, 2010 [2012-05-02].
- ^ Killeen G, Fillinger U, Kiche I, Gouagna L, Knols B. Eradication of Anopheles gambiae from Brazil: Lessons for malaria control in Africa?. Lancet Infectious Diseases. 2002, 2 (10): 618–27. PMID 12383612. doi:10.1016/S1473-3099(02)00397-3.
- ^ Vanderberg JP. Reflections on early malaria vaccine studies, the first successful human malaria vaccination, and beyond. Vaccine. 2009, 27 (1): 2–9. PMC 2637529
. PMID 18973784. doi:10.1016/j.vaccine.2008.10.028.
- ^ Humphreys M. Malaria: Poverty, Race, and Public Health in the United States. Johns Hopkins University Press. 2001: 256. ISBN 0-8018-6637-5.
- ^ Sachs J, Malaney P. The economic and social burden of malaria. Nature. 2002, 415 (6872): 680–5. PMID 11832956. doi:10.1038/415680a.
- ^ Roll Back Malaria WHO partnership. Economic costs of malaria (PDF). WHO. 2003.
- ^ Ricci F. Social implications of malaria and their relationships with poverty. Mediterranean Journal of Hematology and Infectious Diseases. 2012, 4 (1): e2012048. PMC 3435125
. PMID 22973492. doi:10.4084/MJHID.2012.048.
- ^ Lon CT, Tsuyuoka R, Phanouvong S, Nivanna N, Socheat D, Sokhan C, Blum N, Christophel EM, Smine A. Counterfeit and substandard antimalarial drugs in Cambodia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2006, 100 (11): 1019–24. PMID 16765399. doi:10.1016/j.trstmh.2006.01.003.
- ^ Newton PN, Fernández FM, Plançon A, Mildenhall DC, Green MD, Ziyong L, Christophel EM, Phanouvong S, Howells S, McIntosh E, Laurin P, Blum N, Hampton CY, Faure K, Nyadong L, Soong CW, Santoso B, Zhiguang W, Newton J, Palmer K. A collaborative epidemiological investigation into the criminal fake artesunate trade in South East Asia. PLoS Medicine. 2008, 5 (2): e32. PMC 2235893
. PMID 18271620. doi:10.1371/journal.pmed.0050032.
- ^ Newton PN Green MD, Fernández FM, Day NPJ, White NJ. Counterfeit anti-infective drugs. Lancet Infectious Diseases. 2006, 6 (9): 602–13. PMID 16931411. doi:10.1016/S1473-3099(06)70581-3.
- ^ Parry J. WHO combats counterfeit malaria drugs in Asia. British Medical Journal. 2005, 330 (7499): 1044. PMC 557259
. PMID 15879383. doi:10.1136/bmj.330.7499.1044-d.
- ^ Gautam CS, Utreja A, Singal GL. Spurious and counterfeit drugs: A growing industry in the developing world. Postgraduate Medical Journal. 2009, 85 (1003): 251–6. PMID 19520877. doi:10.1136/pgmj.2008.073213.
- ^ Caudron J-M, Ford N, Henkens M, Macé, Kidle-Monroe R, Pinel J. Substandard medicines in resource-poor settings: A problem that can no longer be ignored. Tropical Medicine & International Health. 2008, 13 (8): 1062–72. PMID 18631318. doi:10.1111/j.1365-3156.2008.02106.x.
- ^ Nayyar GML, Breman JG, Newton PN, Herrington J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infectious Diseases. 2012, 12 (6): 488–96. PMID 22632187. doi:10.1016/S1473-3099(12)70064-6.
- ^ Russell PF. Communicable diseases. Malaria. Medical Department of the United States Army in World War II. U.S. Army Medical Department. Office of Medical History. January 6, 2009 [2012-09-24].
- ^ Melville CH. The prevention of malaria in war. Ross R (编). The Prevention of Malaria. New York, New York: E.P. Dutton. 1910: 577.
- ^ Bray RS. Armies of Pestilence: The Effects of Pandemics on History. James Clarke. 2004: 102. ISBN 978-0-227-17240-7.
- ^ Byrne JP. Encyclopedia of Pestilence, Pandemics, and Plagues: A-M. ABC-CLIO. 2008: 383. ISBN 978-0-313-34102-1.
- ^ Kakkilaya BS. History of Malaria During Wars. Malariasite.com. April 14, 2006 [2012-05-03].
- ^ History | CDC Malaria. Cdc.gov. February 8, 2010 [2012-05-15].
- ^ Strom S. Mission Accomplished, Nonprofits Go Out of Business. The New York Times. April 1, 2011. nytimes.com [2012-05-09]. OCLC 292231852.
- ^ Fighting AIDS, Tuberculosis and Malaria. The Global Fund. [2012-05-09].
- ^ Schoofs M. Clinton foundation sets up malaria-drug price plan. Wall Street Journal. July 17, 2008 [2012-05-14].
- ^ Executive summary and key points (PDF). World Malaria Report 2013. World Health Organization. [13 February 2014].
- ^ World Malaria Report 2013 (PDF). World Health Organization. [13 February 2014].
- ^ Meade MS, Emch M. Medical Geography 3rd. Guilford Press. 2010: 120–3. ISBN 978-1-60623-016-9.
- ^ Williams LL. Malaria eradication in the United States. American Journal of Public Health and the Nation's Health. 1963, 53 (1): 17–21. PMC 1253858
. PMID 14000898. doi:10.2105/AJPH.53.1.17.
- ^ Breeveld FJV, Vreden SGS, Grobusch MP. History of malaria research and its contribution to the malaria control success in Suriname: A review. Malaria Journal. 2012, 11: 95. PMC 3337231
. PMID 22458802. doi:10.1186/1475-2875-11-95.
- ^ Yangzom T, Gueye CS, Namgay R, Galappaththy GN, Thimasarn K, Gosling R, Murugasampillay S, Dev V. Malaria control in Bhutan: Case study of a country embarking on elimination. Malaria Journal. 2012, 11: 9. PMC 3278342
. PMID 22230355. doi:10.1186/1475-2875-11-9.
- ^ 173.0 173.1 Hill AVS. Vaccines against malaria. Philosophical Transactions of the Royal Society B. 2011, 366 (1579): 2806–14. PMC 3146776
. PMID 21893544. doi:10.1098/rstb.2011.0091.
- ^ Geels MJ, Imoukhuede EB, Imbault N, van Schooten H, McWade T, Troye-Blomberg M, Dobbelaer R, Craig AG, Leroy O. European Vaccine Initiative: Lessons from developing malaria vaccines (PDF). Expert Review of Vaccines. 2011, 10 (12): 1697–708. PMID 22085173. doi:10.1586/erv.11.158.
- ^ Crompton PD, Pierce SK, Miller LH. Advances and challenges in malaria vaccine development. Journal of Clinical Investigation. 2010, 120 (12): 4168–78. PMC 2994342
. PMID 21123952. doi:10.1172/JCI44423.
- ^ Graves P, Gelband H. Graves PM , 编. Vaccines for preventing malaria (blood-stage). Cochrane Database of Systematic Reviews. 2006, (4): CD006199. PMID 17054281. doi:10.1002/14651858.CD006199.
- ^ Graves P, Gelband H. Graves PM , 编. Vaccines for preventing malaria (SPf66). Cochrane Database of Systematic Reviews. 2006, (2): CD005966. PMID 16625647. doi:10.1002/14651858.CD005966.
- ^ Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T, Chakravarty S, Gunasekera A, Chattopadhyay R, Li M, Stafford R, Ahumada A, Epstein JE, Sedegah M, Reyes S, Richie TL, Lyke KE, Edelman R, Laurens MB, Plowe CV, Sim BK. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Human Vaccines. 2010, 6 (1): 97–106. PMID 19946222. doi:10.4161/hv.6.1.10396.
- ^ Malaria Vaccine Advisory Committee. Malaria Vaccine Technology Roadmap (PDF) (Report). PATH Malaria Vaccine Initiative (MVI): 2. 2006.
- ^ Kalanon M, McFadden GI. Malaria, Plasmodium falciparum and its apicoplast. Biochemical Society Transactions. 2010, 38 (3): 775–82. PMID 20491664. doi:10.1042/BST0380775.
- ^ Müller IB, Hyde JE, Wrenger C. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends in Parasitology. 2010, 26 (1): 35–43. PMID 19939733. doi:10.1016/j.pt.2009.10.006.
- ^ Du Q, Wang H, Xie J. Thiamin (vitamin B1) biosynthesis and regulation: A rich source of antimicrobial drug targets?. International Journal of Biological Sciences. 2011, 7 (1): 41–52. PMC 3020362
. PMID 21234302. doi:10.7150/ijbs.7.41.
- ^ Biot C, Castro W, Botté CY, Navarro M. The therapeutic potential of metal-based antimalarial agents: Implications for the mechanism of action. Dalton Transactions. 2012, 41 (21): 6335–49. PMID 22362072. doi:10.1039/C2DT12247B.
- ^ Roux C, Biot C. Ferrocene-based antimalarials. Future Medicinal Chemistry. 2012, 4 (6): 783–97. PMID 22530641. doi:10.4155/fmc.12.26.
- ^ 185.0 185.1 Carroll, John. New malaria drug unleashes an immune system assault on infected cells. fiercebiotechresearch.com. 8 December 2014 [16 December 2014].
- ^ Aultman KS, Gottlieb M, Giovanni MY, Fauci AS. Anopheles gambiae genome: completing the malaria triad. Science. 2002, 298 (5591): 13. PMID 12364752. doi:10.1126/science.298.5591.13.
- ^ Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002, 417 (6887): 452–5. PMID 12024215. doi:10.1038/417452a.
- ^ Rich SM, Ayala FJ. Evolutionary origins of human malaria parasites. Dronamraju KR, Arese P (编). Malaria: Genetic and Evolutionary Aspects. New York, New York: Springer. 2006: 125–46. ISBN 978-0-387-28294-7.
- ^ Baird JK. Malaria zoonoses. Travel Medicine and Infectious Disease. 2009, 7 (5): 269–77. PMID 19747661. doi:10.1016/j.tmaid.2009.06.004.
- ^ Ameri M. Laboratory diagnosis of malaria in nonhuman primates. Veterinary Clinical Pathology. 2010, 39 (1): 5–19. PMID 20456124. doi:10.1111/j.1939-165X.2010.00217.x.
- ^ Mlambo G, Kumar N. Transgenic rodent Plasmodium berghei parasites as tools for assessment of functional immunogenicity and optimization of human malaria vaccines. Eukaryotic Cell. 2008, 7 (11): 1875–9. PMC 2583535
. PMID 18806208. doi:10.1128/EC.00242-08.
- ^ Lapointe DA, Atkinson CT, Samuel MD. Ecology and conservation biology of avian malaria. Annals of the New York Academy of Sciences. 2012, 1249: 211–26. PMID 22320256. doi:10.1111/j.1749-6632.2011.06431.x.
- ^ 米勒·路易斯(Louis H. Miller)和苏新专(Xin-zhuan Su). 青蒿素:源自中草药园的发现. 《细胞》 (CAMBRIDGE, MA 02139, USA: Cell Press). 2011-09-16, 146 (6): 855–858. ISSN 0092-8674. PMID 21907397. doi:10.1016/j.cell.2011.08.024.
- ^ 方舟子. 青蒿素和中药有多大的关系?. 2011-09-23 [2011-09-26].
- ^ WHO 2010,第75–86頁
- ^ WHO 2010,第21頁
引用错误:在<references>
标签中name属性为“Arrow 2004”的参考文献没有在文中使用
引用错误:在<references>
标签中name属性为“Baird 2013”的参考文献没有在文中使用
<references>
标签中name属性为“Ferri 2009”的参考文献没有在文中使用- 引用文章
- WHO. Guidelines for the Treatment of Malaria (PDF) (Report) 2nd. World Health Organization. 2010. ISBN 978-9-2415-4792-5.
- Schlagenhauf-Lawlor P. Travelers' Malaria. PMPH-USA. 2008. ISBN 978-1-55009-336-0.
外部連結
![]() |
维基共享资源中相关的多媒体资源:疟疾 |
![]() |
維基導遊上的相關旅行指南:Malaria |
![]() |
查看维基词典中的词条「malaria」。 |
- 寄生蟲學-protozoa(原蟲)-Plasmodium(瘧原蟲屬)
- 中華民國疾病管制局-瘧疾防治
- 疟疾地图计划
- 开放式目录计划中和疟疾相关的内容
- WHO site on malaria
- UNHCO site on malaria
- Global Malaria Action Plan(2008年)
- Doctors Without Borders/Médecins Sans Frontières – Malaria information pages
- Who/TDR Malaria Database
- Anti malaria and sustainable development
- Worldwide Antimalarial Resistance Network (WWARN)
延伸閱讀
- Packard RM. The Making of a Tropical Disease: A Short History of Malaria. Johns Hopkins Biographies of Disease. JHU Press. 2007. ISBN 978-0-8018-8712-3.
- Shah S. The Fever: How Malaria Has Ruled Humankind for 500,000 Years. Macmillan. 2010. ISBN 978-0-374-23001-2. excerpt and text search
- Bynum WF, Overy C. The Beast in the Mosquito: The Correspondence of Ronald Ross and Patrick Manson. Wellcome Institute Series in The History of Medicine. Rodopi. 1998. ISBN 978-90-420-0721-5.
|
|
Template:Chromalveolate diseases
|