三尖瓣线

维基百科,自由的百科全书
跳转至: 导航搜索
紅色的即為三尖瓣线

三尖瓣线(tricuspoid)也稱為Steiner曲線(Steiner curve),是有三個尖點圆内螺线,是一個圓繞著直徑為其三倍的圓內側無滑動滾動時,圓上一點產生的一般旋轮线

三尖瓣线也可以指有三個頂點,之間用向內彎曲的曲線相連的封閉空間,因此三尖瓣线內的空間是非凸集合[1]

方程式[编辑]

三尖瓣线可以用以下的參數方程表示:

其中a是小圓的半徑,b是大圓(也就是小圓在其內側無滑動滾動)的半徑(此處b = 3a)。

在複變座標下可得

.

上述的t可以消去,得到以下的笛卡爾座標下的方程

因此三尖瓣线是四階的代數曲線,在極坐標下為

曲線有三個奇點,是對應的尖點。上述的參數式意味者曲線為有理曲線,也就表示其幾何虧格英语geometric genus為零。

三尖瓣线的對偶曲線英语dual curve

在原點有一個二重點,若進行一個虛軸上的旋轉y ↦ iy,曲線會變為下式,就可以看到其二重點

在實平面的原點上有二重點。

面積及周長[编辑]

三尖瓣线的面積為,其中a為小圓的半徑,其面積是小圓面積的兩倍[2]

其周長為16a[2]

歷史[编辑]

早在1599年時,伽利略·伽利莱马兰·梅森就已開始研究常見的摆线,而奧勒·羅默在1674年研究齒輪的最佳外形時,也有用到摆线。李昂哈德·歐拉認為他是最早(1745年)將三尖瓣线應用在實際光學問題的人。

應用[编辑]

三尖瓣线有應用在許多的數學領域中,舉例如下:

相關條目[编辑]

参考资料[编辑]

  1. ^ [1]
  2. ^ 2.0 2.1 Weisstein, Eric W. "Deltoid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Deltoid.html
  3. ^ Lockwood
  4. ^ Dunn, J. A., and Pretty, J. A., "Halving a triangle," Mathematical Gazette 56, May 1972, 105-108.
  5. ^ [2]