# 三角函數精確值

${\displaystyle 0}$ ${\displaystyle {\frac {1}{12}}}$ ${\displaystyle {\frac {1}{8}}}$ ${\displaystyle {\frac {1}{6}}}$ ${\displaystyle {\frac {1}{4}}}$ ${\displaystyle {\frac {1}{2}}}$ ${\displaystyle {\frac {3}{4}}}$ ${\displaystyle 1}$

## 計算方式

### 經由半角公式的計算

${\displaystyle \sin \left({\frac {x}{2}}\right)=\pm \,{\sqrt {{\tfrac {1}{2}}(1-\cos x)}}}$
${\displaystyle \cos \left({\frac {x}{2}}\right)=\pm \,{\sqrt {{\tfrac {1}{2}}(1+\cos x)}}}$

### 利用三倍角公式求${\displaystyle {\frac {1}{3}}\,}$角

• ${\displaystyle \sin 3\theta =3\sin \theta -4\sin ^{3}\theta \,}$
• ${\displaystyle \cos 3\theta =4\cos ^{3}\theta -3\cos \theta \,}$

• ${\displaystyle \sin \theta =3\sin {\frac {1}{3}}\theta -4\sin ^{3}{\frac {1}{3}}\theta \,}$
• ${\displaystyle \cos \theta =4\cos ^{3}{\frac {1}{3}}\theta -3\cos {\frac {1}{3}}\theta \,}$

${\displaystyle \cos {\frac {1}{3}}\theta \,}$當成未知數，${\displaystyle \cos \theta \,}$當成常數項 解一元三次方程式即可求出

### 经由欧拉公式的计算

• ${\displaystyle \cos {\frac {\theta }{n}}=\Re \left({\sqrt[{n}]{\cos \theta +i\sin \theta }}\right)={\frac {1}{2}}\left({\sqrt[{n}]{\cos \theta +i\sin \theta }}+{\sqrt[{n}]{\cos \theta -i\sin \theta }}\right)}$
• ${\displaystyle \sin {\frac {\theta }{n}}=\Im \left({\sqrt[{n}]{\cos \theta +i\sin \theta }}\right)={\frac {1}{2i}}\left({\sqrt[{n}]{\cos \theta +i\sin \theta }}-{\sqrt[{n}]{\cos \theta -i\sin \theta }}\right)}$

${\displaystyle \sin {1^{\circ }}={\frac {1}{2i}}\left({\sqrt[{3}]{\cos {3^{\circ }}+i\sin {3^{\circ }}}}-{\sqrt[{3}]{\cos {3^{\circ }}-i\sin {3^{\circ }}}}\right)}$
${\displaystyle ={\frac {1}{4{\sqrt[{3}]{2}}i}}{\Bigg \{}{\sqrt[{3}]{\left[2(1+{\sqrt {3}}){\sqrt {5+{\sqrt {5}}}}+{\sqrt {2}}({\sqrt {5}}-1)({\sqrt {3}}-1)\right]+i\left[2(1-{\sqrt {3}}){\sqrt {5+{\sqrt {5}}}}+{\sqrt {2}}({\sqrt {5}}-1)({\sqrt {3}}+1)\right]}}}$
${\displaystyle -{\sqrt[{3}]{\left[2(1+{\sqrt {3}}){\sqrt {5+{\sqrt {5}}}}+{\sqrt {2}}({\sqrt {5}}-1)({\sqrt {3}}-1)\right]-i\left[2(1-{\sqrt {3}}){\sqrt {5+{\sqrt {5}}}}+{\sqrt {2}}({\sqrt {5}}-1)({\sqrt {3}}+1)\right]}}{\Bigg \}}}$[1]

### 經由和角公式的計算

${\displaystyle \sin(x\pm y)=\sin(x)\cos(y)\pm \cos(x)\sin(y)\,}$
${\displaystyle \cos(x\pm y)=\cos(x)\cos(y)\mp \sin(x)\sin(y)\,}$

### 經由托勒密定理的計算

${\displaystyle a^{2}+ab=b^{2}}$
${\displaystyle \left({\frac {a}{b}}\right)^{2}+{\frac {a}{b}}=1}$
${\displaystyle \mathrm {crd} \ {36^{\circ }}=\mathrm {crd} \left(\angle \mathrm {ADB} \right)={\frac {a}{b}}={\frac {{\sqrt {5}}-1}{2}}}$
${\displaystyle \mathrm {crd} \ {\theta }=2\sin {\frac {\theta }{2}}\,}$
${\displaystyle \sin {18^{\circ }}={\frac {{\sqrt {5}}-1}{4}}}$

## 三角函数精确值列表

### 0°：根本

${\displaystyle \sin 0=0\,}$
${\displaystyle \cos 0=1\,}$
${\displaystyle \tan 0=0\,}$

### 1°：2°的一半

${\displaystyle \sin {1^{\circ }}={\frac {1+{\sqrt {3}}i}{16}}{\sqrt[{3}]{4{\sqrt {30}}-8{\sqrt {15+3{\sqrt {5}}}}+8{\sqrt {5+{\sqrt {5}}}}+4{\sqrt {10}}-4{\sqrt {6}}-4{\sqrt {2}}+\left(4{\sqrt {30}}+8{\sqrt {15+3{\sqrt {5}}}}+8{\sqrt {5+{\sqrt {5}}}}-4{\sqrt {10}}-4{\sqrt {6}}+4{\sqrt {2}}\right)i}}+}$
${\displaystyle {\frac {1-{\sqrt {3}}i}{16}}{\sqrt[{3}]{4{\sqrt {30}}-8{\sqrt {15+3{\sqrt {5}}}}+8{\sqrt {5+{\sqrt {5}}}}+4{\sqrt {10}}-4{\sqrt {6}}-4{\sqrt {2}}-\left(4{\sqrt {30}}+8{\sqrt {15+3{\sqrt {5}}}}+8{\sqrt {5+{\sqrt {5}}}}-4{\sqrt {10}}-4{\sqrt {6}}+4{\sqrt {2}}\right)i}}}$[2]

### 1.5°：正一百二十边形

${\displaystyle \sin \left({\frac {\pi }{120}}\right)=\sin \left(1.5^{\circ }\right)={\frac {\left({\sqrt {2+{\sqrt {2}}}}\right)\left({\sqrt {15}}+{\sqrt {3}}-{\sqrt {10-2{\sqrt {5}}}}\right)-\left({\sqrt {2-{\sqrt {2}}}}\right)\left({\sqrt {30-6{\sqrt {5}}}}+{\sqrt {5}}+1\right)}{16}}}$
${\displaystyle \cos \left({\frac {\pi }{120}}\right)=\cos \left(1.5^{\circ }\right)={\frac {\left({\sqrt {2+{\sqrt {2}}}}\right)\left({\sqrt {30-6{\sqrt {5}}}}+{\sqrt {5}}+1\right)+\left({\sqrt {2-{\sqrt {2}}}}\right)\left({\sqrt {15}}+{\sqrt {3}}-{\sqrt {10-2{\sqrt {5}}}}\right)}{16}}}$

### 1.875°：正九十六边形

${\displaystyle \sin \left({\frac {\pi }{96}}\right)=\sin \left(1.875^{\circ }\right)={\frac {1}{2}}{\sqrt {2-{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {3}}}}}}}}}}}$
${\displaystyle \cos \left({\frac {\pi }{96}}\right)=\cos \left(1.875^{\circ }\right)={\frac {1}{2}}{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {3}}}}}}}}}}}$
${\displaystyle \tan \left({\frac {\pi }{96}}\right)=\tan \left(1.875^{\circ }\right)={\frac {\sqrt {2-{\sqrt {{\sqrt {{\sqrt {{\sqrt {3}}+2}}+2}}+2}}}}{\sqrt {{\sqrt {{\sqrt {{\sqrt {{\sqrt {3}}+2}}+2}}+2}}+2}}}}$

### 2°：6°的三分之一

${\displaystyle \sin {2^{\circ }}={\frac {1}{2i}}\left({\sqrt[{3}]{\cos {6^{\circ }}+i\sin {6^{\circ }}}}-{\sqrt[{3}]{\cos {6^{\circ }}-i\sin {6^{\circ }}}}\right)}$
${\displaystyle ={\frac {1}{4i}}{\Bigg \{}{\sqrt[{3}]{\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]+i\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]}}}$
${\displaystyle -{\sqrt[{3}]{\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]-i\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]}}{\Bigg \}}}$
${\displaystyle \cos {2^{\circ }}={\frac {1}{2}}\left({\sqrt[{3}]{\cos {6^{\circ }}+i\sin {6^{\circ }}}}+{\sqrt[{3}]{\cos {6^{\circ }}-i\sin {6^{\circ }}}}\right)}$
${\displaystyle ={\frac {1}{4}}{\Bigg \{}{\sqrt[{3}]{\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]+i\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]}}}$
${\displaystyle +{\sqrt[{3}]{\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]-i\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]}}{\Bigg \}}}$

### 2.25°：正八十边形

${\displaystyle \sin \left({\frac {\pi }{80}}\right)=\sin \left(2.25^{\circ }\right)={\frac {\sqrt {-2{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+8}}{4}}}$
${\displaystyle \cos \left({\frac {\pi }{80}}\right)=\cos \left(2.25^{\circ }\right)={\frac {\sqrt {2{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+8}}{4}}}$
${\displaystyle \tan \left({\frac {\pi }{80}}\right)=\tan \left(2.25^{\circ }\right)={\frac {\sqrt {-{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+4}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+4}}}}$
${\displaystyle \cot \left({\frac {\pi }{80}}\right)=\cot \left(2.25^{\circ }\right)={\frac {\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+4}}{\sqrt {-{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+4}}}}$
${\displaystyle \sec \left({\frac {\pi }{80}}\right)=\sec \left(2.25^{\circ }\right)={\frac {2{\sqrt {2}}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+4}}}}$
${\displaystyle \csc \left({\frac {\pi }{80}}\right)=\csc \left(2.25^{\circ }\right)={\frac {2{\sqrt {2}}}{\sqrt {-{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {2}}{\sqrt {{\sqrt {5}}+5}}+4}}+4}}+4}}}}$

### 2.8125°：正六十四边形

${\displaystyle \sin \left({\frac {\pi }{64}}\right)=\sin \left(2.8125^{\circ }\right)={\frac {1}{2}}{\sqrt {2-{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}}}}}}$
${\displaystyle \cos \left({\frac {\pi }{64}}\right)=\cos \left(2.8125^{\circ }\right)={\frac {1}{2}}{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}}}}}}$

### 3°：正六十边形

${\displaystyle \sin {\frac {\pi }{60}}=\sin 3^{\circ }={\tfrac {1}{4}}{\sqrt {8-{\sqrt {3}}-{\sqrt {15}}-{\sqrt {10-2{\sqrt {5}}}}}}\,}$
${\displaystyle \cos {\frac {\pi }{60}}=\cos 3^{\circ }={\tfrac {1}{4}}{\sqrt {8+{\sqrt {3}}+{\sqrt {15}}+{\sqrt {10-2{\sqrt {5}}}}}}\,}$
${\displaystyle \tan {\frac {\pi }{60}}=\tan 3^{\circ }={\tfrac {1}{4}}\left[(2-{\sqrt {3}})(3+{\sqrt {5}})-2\right]\left[2-{\sqrt {2(5-{\sqrt {5}})}}\right]\,}$

### 3.75°：正四十八边形

${\displaystyle \sin \left({\frac {\pi }{48}}\right)=\sin \left(3.75^{\circ }\right)={\frac {1}{2}}{\sqrt {2-{\sqrt {2+{\sqrt {2+{\sqrt {3}}}}}}}}}$
${\displaystyle \cos \left({\frac {\pi }{48}}\right)=\cos \left(3.75^{\circ }\right)={\frac {1}{2}}{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {3}}}}}}}}}$

### 4°：12°的三分之一

${\displaystyle \sin {4^{\circ }}={\frac {1}{2i}}\left({\sqrt[{3}]{\cos {12^{\circ }}+i\sin {12^{\circ }}}}-{\sqrt[{3}]{\cos {12^{\circ }}-i\sin {12^{\circ }}}}\right)}$
${\displaystyle ={\frac {1}{4i}}{\Bigg \{}{\sqrt[{3}]{\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]+i\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]}}}$
${\displaystyle -{\sqrt[{3}]{\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]-i\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]}}{\Bigg \}}}$
${\displaystyle \cos {4^{\circ }}={\frac {1}{2}}\left({\sqrt[{3}]{\cos {12^{\circ }}+i\sin {12^{\circ }}}}+{\sqrt[{3}]{\cos {12^{\circ }}-i\sin {12^{\circ }}}}\right)}$
${\displaystyle ={\frac {1}{4}}{\Bigg \{}{\sqrt[{3}]{\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]+i\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]}}}$
${\displaystyle +{\sqrt[{3}]{\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]-i\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]}}{\Bigg \}}}$

### 4.5°：正四十边形

${\displaystyle \sin \left({\frac {\pi }{40}}\right)=\sin \left(4.5^{\circ }\right)={\frac {1}{2}}{\sqrt {2-{\sqrt {2+{\sqrt {\frac {5+{\sqrt {5}}}{2}}}}}}}}$
${\displaystyle \cos \left({\frac {\pi }{40}}\right)=\cos \left(4.5^{\circ }\right)={\frac {1}{2}}{\sqrt {2+{\sqrt {2+{\sqrt {\frac {5+{\sqrt {5}}}{2}}}}}}}}$

### 5°：15°的三分之一、正三十六边形

${\displaystyle \sin {\frac {\pi }{36}}=\sin 5^{\circ }={\frac {2-2{\sqrt {3}}\mathrm {i} }{2{\sqrt[{3}]{2({\sqrt {2}}-{\sqrt {6}})}}-2-{\sqrt {3}}}}-{\frac {(1+{\sqrt {3}}\mathrm {i} ){\sqrt[{3}]{2({\sqrt {2}}-{\sqrt {6}})}}-2-{\sqrt {3}}}{8}}\,}$

### 5.625°：正三十二边形

${\displaystyle \sin \left({\frac {\pi }{32}}\right)=\sin \left(5.625^{\circ }\right)={\frac {1}{2}}{\sqrt {2-{\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}}}}$
${\displaystyle \cos \left({\frac {\pi }{32}}\right)=\cos \left(5.625^{\circ }\right)={\frac {1}{2}}{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}}}}$

### 6°：正三十边形

${\displaystyle \sin {\frac {\pi }{30}}=\sin 6^{\circ }={\tfrac {1}{8}}\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]\,}$
${\displaystyle \cos {\frac {\pi }{30}}=\cos 6^{\circ }={\tfrac {1}{8}}\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]\,}$
${\displaystyle \tan {\frac {\pi }{30}}=\tan 6^{\circ }={\tfrac {1}{2}}\left[{\sqrt {2(5-{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]\,}$
${\displaystyle \cot {\frac {\pi }{30}}=\cot 6^{\circ }={\tfrac {1}{2}}\left({\sqrt {50+22{\sqrt {5}}}}+3{\sqrt {3}}+{\sqrt {15}}\right)\,}$
${\displaystyle \sec {\frac {\pi }{30}}=\sec 6^{\circ }={\sqrt {3}}-{\sqrt {5-2{\sqrt {5}}}}\,}$
${\displaystyle \csc {\frac {\pi }{30}}=\csc 6^{\circ }=2+{\sqrt {5}}+{\sqrt {15+6{\sqrt {5}}}}\,}$

### 7.5°：正二十四边形

${\displaystyle \sin {\frac {\pi }{24}}=\sin 7.5^{\circ }={\tfrac {1}{4}}{\sqrt {8-2{\sqrt {6}}-2{\sqrt {2}}}}\,}$
${\displaystyle \cos {\frac {\pi }{24}}=\cos 7.5^{\circ }={\tfrac {1}{4}}{\sqrt {8+2{\sqrt {6}}+2{\sqrt {2}}}}\,}$
${\displaystyle \tan {\frac {\pi }{24}}=\tan 7.5^{\circ }={\sqrt {6}}+{\sqrt {2}}-2-{\sqrt {3}}\,}$
${\displaystyle \cot {\frac {\pi }{24}}=\cot 7.5^{\circ }={\sqrt {6}}+{\sqrt {2}}+2+{\sqrt {3}}\,}$
${\displaystyle \sec {\frac {\pi }{24}}=\sec 7.5^{\circ }={\sqrt {16-6{\sqrt {6}}-10{\sqrt {2}}+8{\sqrt {3}}}}\,}$
${\displaystyle \csc {\frac {\pi }{24}}=\csc 7.5^{\circ }={\sqrt {16+6{\sqrt {6}}+10{\sqrt {2}}+8{\sqrt {3}}}}\,}$

### 9°：正二十边形

${\displaystyle \sin {\frac {\pi }{20}}=\sin 9^{\circ }={\tfrac {1}{4}}{\sqrt {8-2{\sqrt {10+2{\sqrt {5}}}}}}\,}$
${\displaystyle \cos {\frac {\pi }{20}}=\cos 9^{\circ }={\tfrac {1}{4}}{\sqrt {8+2{\sqrt {10+2{\sqrt {5}}}}}}\,}$
${\displaystyle \tan {\frac {\pi }{20}}=\tan 9^{\circ }={\sqrt {5}}+1-{\sqrt {5+2{\sqrt {5}}}}\,}$
${\displaystyle \cot {\frac {\pi }{20}}=\cot 9^{\circ }={\sqrt {5}}+1+{\sqrt {5+2{\sqrt {5}}}}\,}$

### 10°：正十八边形

${\displaystyle {\tan 10^{\circ }=-{\frac {-1-{\sqrt {3}}{\rm {i}}}{6}}{\sqrt[{3}]{-12{\sqrt {3}}+36{\rm {i}}}}-{\frac {-1+{\sqrt {3}}{\rm {i}}}{6}}{\sqrt[{3}]{-12{\sqrt {3}}-36{\rm {i}}}}+{\frac {1}{\sqrt {3}}}}\,}$

### 11.25°：正十六边形

${\displaystyle \sin {\frac {\pi }{16}}=\sin 11.25^{\circ }={\frac {1}{2}}{\sqrt {2-{\sqrt {2+{\sqrt {2}}}}}}}$
${\displaystyle \cos {\frac {\pi }{16}}=\cos 11.25^{\circ }={\frac {1}{2}}{\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}}$
${\displaystyle \tan {\frac {\pi }{16}}=\tan 11.25^{\circ }={\sqrt {4+2{\sqrt {2}}}}-{\sqrt {2}}-1}$
${\displaystyle \cot {\frac {\pi }{16}}=\cot 11.25^{\circ }={\sqrt {4+2{\sqrt {2}}}}+{\sqrt {2}}+1}$

### 12°：正十五边形

${\displaystyle \sin {\frac {\pi }{15}}=\sin 12^{\circ }={\tfrac {1}{8}}\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]\,}$
${\displaystyle \cos {\frac {\pi }{15}}=\cos 12^{\circ }={\tfrac {1}{8}}\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]\,}$
${\displaystyle \tan {\frac {\pi }{15}}=\tan 12^{\circ }={\tfrac {1}{2}}\left[{\sqrt {3}}(3-{\sqrt {5}})-{\sqrt {2(25-11{\sqrt {5}})}}\right]\,}$

### 15°：正十二边形

${\displaystyle \sin {\frac {\pi }{12}}=\sin 15^{\circ }={\frac {1}{4}}{\sqrt {2}}\left({\sqrt {3}}-1\right)\,}$
${\displaystyle \cos {\frac {\pi }{12}}=\cos 15^{\circ }={\frac {1}{4}}{\sqrt {2}}\left({\sqrt {3}}+1\right)\,}$
${\displaystyle \tan {\frac {\pi }{12}}=\tan 15^{\circ }=2-{\sqrt {3}}\,}$
${\displaystyle \cot {\frac {\pi }{12}}=\cot 15^{\circ }=2+{\sqrt {3}}\,}$

### 18°：正十边形

${\displaystyle \sin {\frac {\pi }{10}}=\sin 18^{\circ }={\tfrac {1}{4}}\left({\sqrt {5}}-1\right)={\tfrac {1}{2}}\varphi ^{-1}\,}$
${\displaystyle \cos {\frac {\pi }{10}}=\cos 18^{\circ }={\tfrac {1}{4}}{\sqrt {2\left(5+{\sqrt {5}}\right)}}\,}$
${\displaystyle \tan {\frac {\pi }{10}}=\tan 18^{\circ }={\tfrac {1}{5}}{\sqrt {5\left(5-2{\sqrt {5}}\right)}}\,}$

### 20°：正九边形、60°的三分之一

${\displaystyle \sin {\frac {\pi }{9}}=\sin 20^{\circ }={\sqrt[{3}]{-{\frac {\sqrt {3}}{16}}+{\sqrt {-{\frac {1}{256}}}}}}+{\sqrt[{3}]{-{\frac {\sqrt {3}}{16}}-{\sqrt {-{\frac {1}{256}}}}}}=}$
${\displaystyle 2^{-{\frac {4}{3}}}\left({\sqrt[{3}]{i-{\sqrt {3}}}}-{\sqrt[{3}]{i+{\sqrt {3}}}}\right)}$
${\displaystyle \cos {\frac {\pi }{9}}=\cos 20^{\circ }=}$
${\displaystyle 2^{-{\frac {4}{3}}}\left({\sqrt[{3}]{1+i{\sqrt {3}}}}+{\sqrt[{3}]{1-i{\sqrt {3}}}}\right)}$

### 21°：9°与12°的和

${\displaystyle \sin {\frac {7\pi }{60}}=\sin 21^{\circ }={\tfrac {1}{4}}{\sqrt {8+{\sqrt {3}}-{\sqrt {15}}-{\sqrt {10+2{\sqrt {5}}}}}}\,}$
${\displaystyle \cos {\frac {7\pi }{60}}=\cos 21^{\circ }={\tfrac {1}{4}}{\sqrt {8-{\sqrt {3}}+{\sqrt {15}}+{\sqrt {10+2{\sqrt {5}}}}}}\,}$
${\displaystyle \tan {\frac {7\pi }{60}}=\tan 21^{\circ }={\tfrac {1}{4}}\left[2-\left(2+{\sqrt {3}}\right)\left(3-{\sqrt {5}}\right)\right]\left[2-{\sqrt {2\left(5+{\sqrt {5}}\right)}}\right]\,}$

### 360/17°，${\displaystyle \mathbf {\left(21{\frac {3}{17}}\right)^{\circ }} }$，${\displaystyle \mathbf {\left({\frac {360}{17}}\right)^{\circ }} }$：正十七边形

${\displaystyle \operatorname {cos} {2\pi \over 17}={\frac {-1+{\sqrt {17}}+{\sqrt {34-2{\sqrt {17}}}}+2{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}}}{16}}}$

### 22.5°：正八边形

${\displaystyle \sin {\frac {\pi }{8}}=\sin 22.5^{\circ }={\tfrac {1}{2}}\left({\sqrt {2-{\sqrt {2}}}}\right)}$
${\displaystyle \cos {\frac {\pi }{8}}=\cos 22.5^{\circ }={\tfrac {1}{2}}\left({\sqrt {2+{\sqrt {2}}}}\right)\,}$
${\displaystyle \tan {\frac {\pi }{8}}=\tan 22.5^{\circ }={\sqrt {2}}-1\,}$

### 24°：12°的二倍

${\displaystyle \sin {\frac {2\pi }{15}}=\sin 24^{\circ }={\tfrac {1}{8}}\left[{\sqrt {3}}({\sqrt {5}}+1)-{\sqrt {2}}{\sqrt {5-{\sqrt {5}}}}\right]\,}$
${\displaystyle \cos {\frac {2\pi }{15}}=\cos 24^{\circ }={\tfrac {1}{8}}\left({\sqrt {6}}{\sqrt {5-{\sqrt {5}}}}+{\sqrt {5}}+1\right)\,}$
${\displaystyle \tan {\frac {2\pi }{15}}=\tan 24^{\circ }={\tfrac {1}{2}}\left[{\sqrt {2(25+11{\sqrt {5}})}}-{\sqrt {3}}(3+{\sqrt {5}})\right]\,}$

### 180/7°，${\displaystyle \mathbf {\left(25{\frac {5}{7}}\right)^{\circ }} }$，${\displaystyle \mathbf {\left({\frac {180}{7}}\right)^{\circ }} }$：正七边形

${\displaystyle \cos {\frac {\pi }{7}}=\cos {\frac {180}{7}}^{\circ }=\cos 25{\frac {5}{7}}^{\circ }={\frac {1}{6}}+{\frac {1-{\sqrt {3}}i}{24}}{\sqrt[{3}]{28-84{\sqrt {3}}i}}+{\frac {1+{\sqrt {3}}i}{24}}{\sqrt[{3}]{28-84{\sqrt {3}}i}}}$

### 27°：12°与15°的和

${\displaystyle \sin {\frac {3\pi }{20}}=\sin 27^{\circ }={\tfrac {1}{8}}\left[2{\sqrt {5+{\sqrt {5}}}}-{\sqrt {2}}\;({\sqrt {5}}-1)\right]\,}$
${\displaystyle \cos {\frac {3\pi }{20}}=\cos 27^{\circ }={\tfrac {1}{8}}\left[2{\sqrt {5+{\sqrt {5}}}}+{\sqrt {2}}\;\left({\sqrt {5}}-1\right)\right]\,}$
${\displaystyle \tan {\frac {3\pi }{20}}=\tan 27^{\circ }={\sqrt {5}}-1-{\sqrt {5-2{\sqrt {5}}}}\,}$

### 30°：正六边形

${\displaystyle \sin {\frac {\pi }{6}}=\sin 30^{\circ }={\tfrac {1}{2}}\,}$
${\displaystyle \cos {\frac {\pi }{6}}=\cos 30^{\circ }={\tfrac {1}{2}}{\sqrt {3}}\,}$
${\displaystyle \tan {\frac {\pi }{6}}=\tan 30^{\circ }={\tfrac {1}{3}}{\sqrt {3}}\,}$

### 33°：15°与18°的和

${\displaystyle \sin {\frac {11\pi }{60}}=\sin 33^{\circ }={\tfrac {1}{4}}{\sqrt {8-{\sqrt {3}}-{\sqrt {15}}+{\sqrt {10-2{\sqrt {5}}}}}}\,}$
${\displaystyle \cos {\frac {11\pi }{60}}=\cos 33^{\circ }={\tfrac {1}{4}}{\sqrt {8+{\sqrt {3}}+{\sqrt {15}}-{\sqrt {10-2{\sqrt {5}}}}}}\,}$
${\displaystyle \tan {\frac {11\pi }{60}}=\tan 33^{\circ }={\tfrac {1}{4}}\left(2{\sqrt {3}}-{\sqrt {5}}-1\right)\left(2{\sqrt {5+2{\sqrt {5}}}}+3+{\sqrt {5}}\right)\,}$
${\displaystyle \cot {\frac {11\pi }{60}}=\cot 33^{\circ }={\tfrac {1}{4}}\left(2{\sqrt {3}}+{\sqrt {5}}+1\right)\left(2{\sqrt {5+2{\sqrt {5}}}}-3-{\sqrt {5}}\right)\,}$

### 36°：正五边形

${\displaystyle \sin {\frac {\pi }{5}}=\sin 36^{\circ }={\tfrac {1}{4}}\left[{\sqrt {2\left(5-{\sqrt {5}}\right)}}\right]\,}$
${\displaystyle \cos {\frac {\pi }{5}}=\cos 36^{\circ }={\frac {1+{\sqrt {5}}}{4}}={\tfrac {1}{2}}\varphi \,}$
${\displaystyle \tan {\frac {\pi }{5}}=\tan 36^{\circ }={\sqrt {5-2{\sqrt {5}}}}\,}$

### 39°：18°与21°的和

${\displaystyle \sin {\frac {13\pi }{60}}=\sin 39^{\circ }={\tfrac {1}{4}}{\sqrt {8-{\sqrt {3}}+{\sqrt {15}}+{\sqrt {10+2{\sqrt {5}}}}}}\,}$
${\displaystyle \cos {\frac {13\pi }{60}}=\cos 39^{\circ }={\tfrac {1}{4}}{\sqrt {8+{\sqrt {3}}-{\sqrt {15}}+{\sqrt {10+2{\sqrt {5}}}}}}\,}$
${\displaystyle \tan {\frac {13\pi }{60}}=\tan 39^{\circ }={\tfrac {1}{4}}\left[\left(2-{\sqrt {3}}\right)\left(3-{\sqrt {5}}\right)-2\right]\left[2-{\sqrt {2\left(5+{\sqrt {5}}\right)}}\right]\,}$

### 42°：21°的2倍

${\displaystyle \sin {\frac {7\pi }{30}}=\sin 42^{\circ }={\frac {{\sqrt {6}}{\sqrt {5+{\sqrt {5}}}}-{\sqrt {5}}+1}{8}}\,}$
${\displaystyle \cos {\frac {7\pi }{30}}=\cos 42^{\circ }={\frac {{\sqrt {2}}{\sqrt {5+{\sqrt {5}}}}+{\sqrt {3}}\left({\sqrt {5}}-1\right)}{8}}\,}$
${\displaystyle \tan {\frac {7\pi }{30}}=\tan 42^{\circ }={\frac {1}{2}}\left({\sqrt {3}}+{\sqrt {15}}-{\sqrt {10+2{\sqrt {5}}}}\right)\,}$
${\displaystyle \cot {\frac {7\pi }{30}}=\cot 42^{\circ }={\frac {1}{2}}\left(3{\sqrt {3}}-{\sqrt {15}}+{\sqrt {50-22{\sqrt {5}}}}\right)\,}$
${\displaystyle \sec {\frac {7\pi }{30}}=\sec 42^{\circ }={\sqrt {5+2{\sqrt {5}}}}-{\sqrt {3}}\,}$
${\displaystyle \sec {\frac {7\pi }{30}}=\sec 42^{\circ }={\sqrt {15-6{\sqrt {5}}}}+{\sqrt {5}}-2\,}$

### 45°：正方形

${\displaystyle \sin {\frac {\pi }{4}}=\sin 45^{\circ }={\frac {\sqrt {2}}{2}}={\frac {1}{\sqrt {2}}}\,}$
${\displaystyle \cos {\frac {\pi }{4}}=\cos 45^{\circ }={\frac {\sqrt {2}}{2}}={\frac {1}{\sqrt {2}}}\,}$
${\displaystyle \tan {\frac {\pi }{4}}=\tan 45^{\circ }=1}$

### 48°

${\displaystyle \sin 48^{\circ }={\frac {1}{4}}{\sqrt {7-{\sqrt {5}}+{\sqrt {6(5-{\sqrt {5}})}}}}}$

### 54°：27°与27°的和

${\displaystyle \sin {\frac {3\pi }{10}}=\sin 54^{\circ }={\frac {{\sqrt {5}}+1}{4}}\,\!}$
${\displaystyle \cos {\frac {3\pi }{10}}=\cos 54^{\circ }={\frac {\sqrt {10-2{\sqrt {5}}}}{4}}}$
${\displaystyle \tan {\frac {3\pi }{10}}=\tan 54^{\circ }={\frac {\sqrt {25+10{\sqrt {5}}}}{5}}\,}$
${\displaystyle \cot {\frac {3\pi }{10}}=\cot 54^{\circ }={\sqrt {5-2{\sqrt {5}}}}\,}$

### 60°：等边三角形

${\displaystyle \sin {\frac {\pi }{3}}=\sin 60^{\circ }={\frac {\sqrt {3}}{2}}\,}$
${\displaystyle \cos {\frac {\pi }{3}}=\cos 60^{\circ }={\frac {1}{2}}\,}$
${\displaystyle \tan {\frac {\pi }{3}}=\tan 60^{\circ }={\sqrt {3}}\,}$
${\displaystyle \cot {\frac {\pi }{3}}=\cot 60^{\circ }={\frac {\sqrt {3}}{3}}={\frac {1}{\sqrt {3}}}\,}$

### 67.5°：7.5°与60°的和

${\displaystyle \sin {\frac {3\pi }{8}}=\sin 67.5^{\circ }={\tfrac {1}{2}}{\sqrt {2+{\sqrt {2}}}}\,}$
${\displaystyle \cos {\frac {3\pi }{8}}=\cos 67.5^{\circ }={\tfrac {1}{2}}{\sqrt {2-{\sqrt {2}}}}\,}$
${\displaystyle \tan {\frac {3\pi }{8}}=\tan 67.5^{\circ }={\sqrt {2}}+1\,}$
${\displaystyle \cot {\frac {3\pi }{8}}=\cot 67.5^{\circ }={\sqrt {2}}-1\,}$

### 72°：36°的二倍

${\displaystyle \sin {\frac {2\pi }{5}}=\sin 72^{\circ }={\tfrac {1}{4}}{\sqrt {2\left(5+{\sqrt {5}}\right)}}\,}$
${\displaystyle \cos {\frac {2\pi }{5}}=\cos 72^{\circ }={\tfrac {1}{4}}\left({\sqrt {5}}-1\right)\,}$
${\displaystyle \tan {\frac {2\pi }{5}}=\tan 72^{\circ }={\sqrt {5+2{\sqrt {5}}}}\,}$
${\displaystyle \cot {\frac {2\pi }{5}}=\cot 72^{\circ }={\tfrac {1}{5}}{\sqrt {5\left(5-2{\sqrt {5}}\right)}}\,}$

### 75°: 30°与45°的和

${\displaystyle \sin {\frac {5\pi }{12}}=\sin 75^{\circ }={\tfrac {1}{4}}\left({\sqrt {6}}+{\sqrt {2}}\right)\,}$
${\displaystyle \cos {\frac {5\pi }{12}}=\cos 75^{\circ }={\tfrac {1}{4}}\left({\sqrt {6}}-{\sqrt {2}}\right)\,}$
${\displaystyle \tan {\frac {5\pi }{12}}=\tan 75^{\circ }=2+{\sqrt {3}}\,}$
${\displaystyle \cot {\frac {5\pi }{12}}=\cot 75^{\circ }=2-{\sqrt {3}}\,}$

### 81°

${\displaystyle \sin 81^{\circ }={\frac {1}{2}}{\sqrt {{\frac {1}{2}}{\Big (}4+{\sqrt {2(5+{\sqrt {5}})}}{\Big )}}}}$

### 90°：根本

${\displaystyle \sin {\frac {\pi }{2}}=\sin 90^{\circ }=1\,}$
${\displaystyle \cos {\frac {\pi }{2}}=\cos 90^{\circ }=0\,}$
${\displaystyle \cot {\frac {\pi }{2}}=\cot 90^{\circ }=0\,}$

## 列表

 ${\displaystyle n}$ ${\displaystyle \sin \left({\frac {2\pi }{n}}\right)}$ ${\displaystyle \cos \left({\frac {2\pi }{n}}\right)}$ ${\displaystyle \tan \left({\frac {2\pi }{n}}\right)}$ 1 ${\displaystyle 0}$ ${\displaystyle 1}$ ${\displaystyle 0}$ 2 ${\displaystyle 0}$ ${\displaystyle -1}$ ${\displaystyle 0}$ 3 ${\displaystyle {\frac {1}{2}}{\sqrt {3}}}$ ${\displaystyle -{\frac {1}{2}}}$ ${\displaystyle -{\sqrt {3}}}$ 4 ${\displaystyle 1}$ ${\displaystyle 0}$ ${\displaystyle \pm \infty }$ 5 ${\displaystyle {\frac {1}{4}}\left({\sqrt {10+2{\sqrt {5}}}}\right)}$ ${\displaystyle {\frac {1}{4}}\left({\sqrt {5}}-1\right)}$ ${\displaystyle {\sqrt {5+2{\sqrt {5}}}}}$ 6 ${\displaystyle {\frac {1}{2}}{\sqrt {3}}}$ ${\displaystyle {\frac {1}{2}}}$ ${\displaystyle {\sqrt {3}}}$ 7 ${\displaystyle {\frac {1}{2}}{\sqrt {{\frac {1}{3}}\left(7-\omega ^{2}{\sqrt[{3}]{\frac {7+21{\sqrt {-3}}}{2}}}-\omega {\sqrt[{3}]{\frac {7-21{\sqrt {-3}}}{2}}}\right)}}}$ ${\displaystyle {\frac {1}{6}}\left(-1+{\sqrt[{3}]{\frac {7+21{\sqrt {-3}}}{2}}}+{\sqrt[{3}]{\frac {7-21{\sqrt {-3}}}{2}}}\right)}$ 8 ${\displaystyle {\frac {1}{2}}{\sqrt {2}}}$ ${\displaystyle {\frac {1}{2}}{\sqrt {2}}}$ ${\displaystyle 1}$ 9 ${\displaystyle {\frac {1}{4}}\left({\sqrt[{3}]{4(-1+{\sqrt {-3}})}}+{\sqrt[{3}]{4(-1-{\sqrt {-3}})}}\right)}$ 10 ${\displaystyle {\frac {1}{4}}\left({\sqrt {10-2{\sqrt {5}}}}\right)}$ ${\displaystyle {\frac {1}{4}}\left({\sqrt {5}}+1\right)}$ ${\displaystyle {\sqrt {5-2{\sqrt {5}}}}}$ 11 12 ${\displaystyle {\frac {1}{2}}}$ ${\displaystyle {\frac {1}{2}}{\sqrt {3}}}$ ${\displaystyle {\frac {1}{3}}{\sqrt {3}}}$ 13 14 ${\displaystyle {\frac {1}{24}}{\sqrt {3\left(112-{\sqrt[{3}]{14336+{\sqrt {-5549064193}}}}-{\sqrt[{3}]{14336-{\sqrt {-5549064193}}}}\right)}}}$ ${\displaystyle {\frac {1}{24}}{\sqrt {3\left(80+{\sqrt[{3}]{14336+{\sqrt {-5549064193}}}}+{\sqrt[{3}]{14336-{\sqrt {-5549064193}}}}\right)}}}$ ${\displaystyle {\sqrt {\frac {112-{\sqrt[{3}]{14336+{\sqrt {-5549064193}}}}-{\sqrt[{3}]{14336-{\sqrt {-5549064193}}}}}{80+{\sqrt[{3}]{14336+{\sqrt {-5549064193}}}}+{\sqrt[{3}]{14336-{\sqrt {-5549064193}}}}}}}}$ 15 ${\displaystyle {\frac {1}{8}}\left({\sqrt {15}}+{\sqrt {3}}-{\sqrt {10-2{\sqrt {5}}}}\right)}$ ${\displaystyle {\frac {1}{8}}\left(1+{\sqrt {5}}+{\sqrt {30-6{\sqrt {5}}}}\right)}$ ${\displaystyle {\frac {1}{2}}\left(-3{\sqrt {3}}-{\sqrt {15}}+{\sqrt {50+22{\sqrt {5}}}}\right)}$ 16 ${\displaystyle {\frac {1}{2}}\left({\sqrt {2-{\sqrt {2}}}}\right)}$ ${\displaystyle {\frac {1}{2}}\left({\sqrt {2+{\sqrt {2}}}}\right)}$ ${\displaystyle {\sqrt {2}}-1}$ 17 ${\displaystyle {\frac {1}{4}}{\sqrt {8-{\sqrt {2\left(15+{\sqrt {17}}+{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {17+3{\sqrt {17}}-{\sqrt {170+38{\sqrt {17}}}}}}\right)}}}}}$ ${\displaystyle {\frac {1}{16}}\left(-1+{\sqrt {17}}+{\sqrt {34-2{\sqrt {17}}}}+2{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}}\right)}$ 18 ${\displaystyle {\frac {1}{4}}\left({\sqrt[{3}]{4{\sqrt {-1}}-4{\sqrt {3}}}}-{\sqrt[{3}]{4{\sqrt {-1}}+4{\sqrt {3}}}}\right)}$ ${\displaystyle {\frac {1}{4}}\left({\sqrt[{3}]{4+4{\sqrt {-3}}}}+{\sqrt[{3}]{4-4{\sqrt {-3}}}}\right)}$ 19 20 ${\displaystyle {\frac {1}{4}}\left({\sqrt {5}}-1\right)}$ ${\displaystyle {\frac {1}{4}}\left({\sqrt {10+2{\sqrt {5}}}}\right)}$ ${\displaystyle {\frac {1}{5}}\left({\sqrt {25-10{\sqrt {5}}}}\right)}$ 21 22 23 24 ${\displaystyle {\frac {1}{4}}\left({\sqrt {6}}-{\sqrt {2}}\right)}$ ${\displaystyle {\frac {1}{4}}\left({\sqrt {6}}+{\sqrt {2}}\right)}$ ${\displaystyle 2-{\sqrt {3}}}$

## 注释

1. ^ Wolfram Alpha验算：[1]页面存档备份，存于互联网档案馆
2. ^ 使用Mathematica驗算，代碼為N[ArcSin[(1 + Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] + (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1] + (1 - Sqrt[3] I)/16 Power[4 Sqrt[30] - 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] + 4 Sqrt[10] - 4 Sqrt[6] - 4 Sqrt[2] - (4 Sqrt[30] + 8 Sqrt[15 + 3 Sqrt[5]] + 8 Sqrt[5 + Sqrt[5]] - 4 Sqrt[10] - 4 Sqrt[6] + 4 Sqrt[2]) I, (3)^-1]], 100]/Degree結果為1與原角度無誤差