五階正方形鑲嵌

维基百科,自由的百科全书
跳到导航 跳到搜索
五階正方形鑲嵌
五階正方形鑲嵌
龐加萊圓盤模型
類別 雙曲正鑲嵌
頂點圖 45
考克斯特符號英语Coxeter-Dynkin diagram CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png
施萊夫利符號 {4,5}
威佐夫符號英语Wythoff symbol 5 | 4 2
對稱群 [5,4], (*542)
對偶 四階五邊形鑲嵌
旋轉對稱群英语Point_groups_in_three_dimensions#Rotation_groups [5,4]+, (542)
特性 正、非嚴格凸、緊湊
立體圖
凱萊-克萊因模型
H2 tiling 245-1.png
四階五邊形鑲嵌
(對偶多面體)

幾何學中,五階正方形鑲嵌是由正方形組成的雙曲正鑲嵌圖,在施萊夫利符號中用{4,5}表示,代表了每個頂點皆為五個正方形的公共頂點,因此每個頂點周圍皆包含了五個不重疊的正方形,一個正方形內角90度,五個正方形超過了360度,因此無法因此無法在平面上作出,但可以在雙曲面上作出,或是以扭歪多面體的方式呈現。

性質[编辑]

五階正方形鑲嵌由正方形組成,且每個頂點都是5個正方形的公共頂點,在施萊夫利符號中用{4,5}表示。由於平面上鑲嵌了四個正方形就滿了,因此若要鑲嵌五個正方形來使每個頂點都是5個正方形的公共頂點的話,僅能將鑲嵌的面扭曲成雙曲面

Paper order-5 square tiling.jpg
一個五階正方形鑲嵌的紙模型,可以看到它不是一個平面,像是一個馬鞍面

相關多面體及鑲嵌[编辑]

球面鑲嵌 雙曲面鑲嵌
Spherical pentagonal hosohedron.png
{2,5}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 532-t2.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 245-1.png
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 255-1.png
{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 256-1.png
{6,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 257-1.png
{7,5}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 258-1.png
{8,5}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 5.pngCDel node.png
... H2 tiling 25i-1.png
{∞,5}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png

五階正方形鑲嵌在拓扑上与一系列用施萊夫利符號{4,n}表示且頂點圖為4n的(广义)多面体一直延伸到双曲镶嵌:

有限 歐氏 雙曲緊空間 仿緊空間 非緊
Uniform polyhedron-43-t0.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 45-t0.png
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 46-t0.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 47-t0.png
{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 48-t0.png
{4,8}...
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 24i-4.png
{4,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
 
{4,iπ/λ}
CDel node 1.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png

五階正方形鑲嵌可以透過截角操作或其他康威變換得到一系列與之相關的半正鑲嵌,其與五階正方形鑲嵌擁有相似的對稱性[5,4], (*542)或[5,4]+(542):

半正五邊形/正方鑲嵌
對稱性: [5,4], (*542) [5,4]+, (542) [5+,4], (5*2) [5,4,1+], (*552)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 54-t0.png Uniform tiling 54-t01.png Uniform tiling 54-t1.png Uniform tiling 54-t12.png Uniform tiling 54-t2.png Uniform tiling 54-t02.png Uniform tiling 54-t012.png Uniform tiling 54-snub.png Uniform tiling 542-h01.png Uniform tiling 552-t0.png
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
半正對偶
CDel node f1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 54-t2.png Order-5 tetrakis square tiling.png Order-5-4 quasiregular rhombic tiling.png Order-4 pentakis pentagonal tiling.png Uniform tiling 54-t0.png Deltoidal tetrapentagonal tiling.png Order-4 bisected pentagonal tiling.png Order-5-4 floret pentagonal tiling.png Uniform tiling 552-t2.png
V54 V4.10.10 V4.5.4.5 V5.8.8 V45 V4.4.5.4 V4.8.10 V3.3.4.3.5 V3.3.5.3.5 V55

五階正方形鑲嵌的雙曲鑲嵌可以反過來多面體化構造進歐幾里得空間而得到半正扭歪無限面體[1]

Five-square skew polyhedron.png

構成的蜂巢體[编辑]

有一些蜂巢體由五階正方形鑲嵌為胞構成

參見[编辑]

參考文獻[编辑]

  1. Richter) Note each face in the polyhedron consist of multiple faces in the tiling – two triangular faces constitute a square face and so forth, as per this explanatory image.
  1. John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  2. Chapter 10: Regular honeycombs in hyperbolic space. The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 

外部連結[编辑]