侵入火成岩

维基百科,自由的百科全书
跳到导航 跳到搜索
一塊侏罗纪 粉紅色二长岩 侵入岩,侵入到灰色 沉積岩 底,然後擡升曝露到陸表。 地點: Notch Peak, House Range, Utah.
蓋在巨大侵入岩上的岩蓋,地點 Sofia附近, 由 Vitosha 正长岩Plana闪长岩 拱頂成山,然後被擡升

侵入火成岩(英語:igneous intrusion)是指岩漿在地表下,經由緩慢冷卻而結晶形成的火成岩, 它具有各種的形狀和組合物[1][2]。例如紐約和新澤西的帕利塞德岩床[2]、猶他州的亨利山脈[2]、南非布什維爾德複雜火成岩[2]、新墨西哥州希普羅克[1]、蘇格蘭Ardnamurchan侵入岩[1]、和加州內華達岩磐[1]

被岩漿侵入的一般圍岩是好的絕緣體,所以岩漿冷卻極其緩慢,形成的火成岩是粗粒度礦物晶體(phaneritic)。侵入火成岩通常按其礦物質含量分類。主要為石英,鹼性長石斜長石,和似长石 等礦物[3][4]

岩漿侵入到圍岩時必須從圍岩中擠出空間才能入侵。至於如何擠出空間乃是目前乃是一個爭論問題[1]。 岩石名詞pluton定義不精確[5],有時被用於描述在地球深處形成的侵入岩石(包括變質岩[2])。也有被用作侵入火成岩的同義詞[6],但無指定大小或特性[7]。或指一個非常大的侵入體 [8]。或指已結晶的岩漿室[9]

分類[编辑]

基本侵入岩種類: 1. 岩蓋, 2. 小 岩脈, 3. 岩磐, 4. 岩脈, 5. Sill, 6. [[火山頸 ]], 管, 7. 岩盆.

侵入火成岩大致分為整合和不整合兩種; 前者為與圍岩層理或構造平行,後者則與相交[1]。然後再它們根據它們大小、形狀和來源方式進一步分類[1] [2]。侵入岩石組是指在同一時間和空間上的侵入火成岩。它們借由同一岩漿來源[10] [11] [12]

不整合侵入火成岩[编辑]

岩脈 岩脈是一種板片狀的不整合侵入體[13]。 不易被侵蝕,因此它們在地形上常脫穎而出成為天然牆壁。它們的厚度從毫米到超過 300 米不等,面積可以達到 12,000 平方公里。組成上也有很大差異。通常岩脈的形成是岩漿充填在圍岩中的裂隙時冷卻而成。裂隙也因爲高壓岩漿的侵入而擴張[1]。岩脈在地殼擴張地區形成最多[14]

環形岩脈和錐型岩板 環形岩脈[15] 和錐型岩板是具有特殊形式的堤壩,與陷落火山口的形成有關[1]

火山頸 火山頸是被侵蝕而暴露的輸送岩漿管道。通常是圓柱形的,在深處通常變成橢圓形甚至丁香葉形。火山頸常有輻射狀岩脈,這表明火山頸是在岩漿通道受阻最少的交匯處形成[1]

火山管角礫岩管是由爆炸性噴發形成的管狀角礫岩體[1]火山管(英語:diatreme),有時被稱為maar-diatreme火山,是由氣體爆炸形成的火山通道。 當岩漿通過地殼裂縫上升並與淺層地下水接觸時,會造成熾熱的水蒸氣,它和火山氣體一起的快速膨脹,引起一系列爆炸。 而留下了一個相對較淺的低平火山口(maar)。原來地殼裂縫的通道也最後被岩石充滿。當火山管 突破地表時,一般形成陡峭的倒錐形火山錐。火山管一詞亦可指,由爆炸或靜水壓力造成的,任何由破碎岩石形成的凹形體。無論它是否與火山作用有關,這個詞來自古希臘語[16]角礫岩管,也稱為煙囪,是由角礫岩,組成的的圓柱狀岩體或不規則岩體[17]。在地表面時,角礫岩管看起來像一個鐵染的旋鈕,直徑從幾英尺到幾百英尺不等。 角礫岩管被矽化程度不一。 它們通常由母岩(周圍岩層碎片)被二氧化矽膠結組成。膠結物也可能是母岩的岩粉。角礫岩管通常是礦石沉積的宿主,尤其是銅和鈾礦[18]。它們很容易被氧化,由於它們的多孔性,氧化作用可遠達地表的深度。 未出露地球表面的角礫岩管被稱為“盲管”[19]

岩冠(英語:Stock(geology))在地質學中,是指露出地表小於 100 平方公里(40 平方英里)的侵入火成岩[20][21]。它與岩磐成因相似但比岩磐規模小。岩冠與其侵入的岩石之間的接觸是不整合面。 許多岩冠是埋在地下岩磐的的露出的圓頂。[22]。圓形或橢圓形的岩冠可能是火山栓的頂[23] [24]。Boss是指小岩冠[25][1]

岩磐是一種不整合不侵入火成岩,暴露于地表面積超過 100 平方公里。它們的底部很少暴露在地表。例如,秘魯的海岸岩磐 長 1,100 公里(680 英里),寬 50 公里(31 英里)。它們通常由富含二氧化矽的岩漿形成,很少含輝長岩或其他富含鎂鐵質礦物的岩石但一些岩磐幾乎完全由斜長岩組成[1]

整合侵入火成岩[编辑]

岩床是一種板狀的一致侵入體,通常平行於沉積層面。 除此外它類似於岩脈。岩床大多數是鎂鐵質成分,二氧化矽含量相對較低,因而低粘也低,這利於它們穿入沉積層面.

岩蓋( 是一種具有平底和圓頂狀的侵入體。 通常形成於淺層,小於 3 公里(1.9 英里),在地殼壓縮區域較多岩磐是一種不整合不侵入火成岩,暴露于地表面積超過 100 平方公里。它們的底部很少暴露在地表。例如,秘魯的海岸岩磐,長 1,100 公里(680 英里),寬 50 公里(31 英里)。它們通常由富含二氧化矽的岩漿形成,很少含輝長岩或其他富含鎂鐵質礦物的岩石但一些岩磐幾乎完全由斜長岩組成[1]

岩盆是具有碟形的一侵入體,有點類似於倒置的岩蓋,但它們更大,所以冷卻非常緩慢,這會產生一種異常的礦物分離,稱為層狀侵入岩.

層狀侵入岩(英語:Layered intrusions) 是大型的岩床狀火成岩,具有垂直方向的分層或成分和質地的差異。這侵入岩的面積可以達到數公里,覆蓋範圍從大約 100 平方公里(39 平方英里)到超過 50,000 平方公里(19,000 平方英里),厚度從幾百米到超過一公里(3,300 英尺)不等[2]。 雖然大多數層狀侵入岩的年齡是太古宙到元古代(例如,古元古代布什維爾德複合體Bushveld complex),),其他年齡亦有,例如格陵蘭島東部的新生代 Skaergaard 層狀侵入岩或蘇格蘭的 Rum 層狀侵入岩[2] [26]。儘管大多數成分為超鎂鐵質至鎂鐵質,但格陵蘭島的 Ilimaussaq 層狀侵入岩體是一種鹼性質。

形成[编辑]

空間問題[编辑]

岩漿的來源是上地幔和下地殼岩石的部分熔融。部分熔融造城的岩漿,其密度低於其源岩的密度。例如,二氧化矽含量高的花崗質岩漿的密度為 2.4 Mg/m3,遠低於高度變質岩的 2.8 Mg/m3。這就造成岩漿的浮力,因此一旦積累了足夠的岩漿,岩漿就會上升。然而,需要有多少岩漿才能夠將圍岩推開為自己騰出空間(房間問題)仍然是一個研究問題[1]。目前被廣泛接受的方法有顶蚀,底闢和膨脹三種。

顶蚀[编辑]

岩漿的垂直運動是由重力驅動的。當圍岩碎塊向下掉入岩漿時,就會發生顶蚀[27] [28] 顶蚀可以在是各種構造環境中進行,已被廣泛用於解釋不協調的岩體接觸。 最常見的顶蚀特徵是岩漿和圍岩之間的速變不整合接觸以及圍岩缺乏韌性變形。 其他特徵包括岩漿中存在捕獲岩、捕獲岩的旋轉和污染岩漿的地球化學證據[29]。 顶蚀的解釋遭遇一個捕獲岩的量和岩漿置入的容積問題。在岩漿未置入以前,相同岩漿容積的圍岩要比岩漿中的捕獲岩容積大很多 [30]

膨脹[编辑]

膨脹是一種置入球形的岩漿方法[31],這個模型推論是,當岩漿上升直到它失去熱量,並在最外緣形成結晶時,岩漿的較熱尾部繼續上升,冲裂並擴大已經結晶的外緣。

底闢[编辑]

底闢是由熱的岩漿流體軟化圍岩一層薄壁而移動[32]。 底闢發生僅限於具有高溫和韌性岩石的地幔和下地殼。

岩漿和圍岩的組成以及圍岩的應力影響侵入類型。例如,在地殼伸展的地方,岩漿很容易上升到上地殼的張性裂縫中,而形成岩脈[1]。在地殼受到壓縮的地方,在淺層的岩漿往往會形成,會穿透較不堅硬的層理面(例如頁岩),形成岩蓋[14]。環形岩脈和錐型岩板也在地殼淺的地區形成,它的上覆的圍岩塞可以升高或降低[1]。只有岩漿具有高度的矽質和浮力時,大量岩漿才能向上移動形成岩磐。並且很可能從具有韌性的深地殼中,造成底闢上升竄入到脆性的上地殼中[1]

多重和復合侵入火成岩[编辑]

侵入體可能由單次或幾次岩漿侵入形成。尤其大型侵入體,一般是多次形成[33][34]。例如,Palisades Sill 從來就不是一個 300 米(980 英尺)厚的岩漿體,而是由多次注入的岩漿形成的[1]。當一個侵入體由重複注入相似成分的岩漿形成時,它被描述為多個,當由重複注入不同成分的岩漿形成時,它被描述為複合體。複合堤防可以包括與花崗岩和輝綠岩一樣不同的岩石[1]

雖然在岩石露頭上通常很難看出有岩漿侵入證據,但地球化學資料可以證明[35]。例如根據鋯石的分佈區域就可提供岩漿多次侵入的證據。

大的長英質侵入岩很可能是由上地幔的鎂鐵質岩漿侵入的加熱,而造成熔融下地殼形成的。長英質和鎂鐵質岩漿的密度不同,因而矽質岩漿浮在鎂鐵質岩漿上。使岩漿混合有限,也導致了在花崗岩和花崗閃長岩中發現的少量鎂鐵質岩石夾雜物[1]

冷卻[编辑]

當岩漿侵入到圍岩時,其熱量通過熱傳導散失給周圍的圍岩。岩漿靠近周圍部分會迅速冷卻,而靠近接觸點的圍岩會迅速加熱,而遠離接觸點的區域,岩漿的冷卻或圍岩的加熱的速度要慢得多[1]。因此,在接觸區域的侵入岩石常有冷邊緣[6],而在圍岩側則有接觸光環。在冷卻邊緣,侵入岩的晶體細小,並且在成分上可能不同,事實上這代表是侵入岩的原始成分。後期的分級結晶、圍岩同化或其他的岩漿注入。 均能改變侵入岩的原始成分。入體的初始成分[2]。 需要指出的是岩漿對流可以改變這種理想冷卻過程,它會減少冷卻邊緣的厚度[1]

侵入岩與圍岩接觸的結構,可以反應岩漿侵入時的環境。高成帶狀侵入岩的接觸光環厚度大,其中漸變到侵入岩,表明侵入岩與圍岩之間的化學反應相當大,通常具有廣闊的混合岩帶。若侵入岩和圍岩都具有大致平行的葉片狀層理,在圍岩亦有構造變形。這多半指是高深度侵入岩。在中成帶狀侵入岩的接觸光環内,其變質作用程度較低,圍岩與侵入岩的接觸清晰可辨。混合岩稀有,圍岩變形中等。屬中等深度侵入岩。淺成帶狀侵入岩與圍岩是不整合接觸,冷邊緣很明顯。在接觸光環中只有低度的變質作用。並且通常含由圍岩碎片祖成的捕虜岩。這種侵入岩屬於淺層侵入,通常與火山岩及火山塌陷結構有關[2]

火成堆積岩[编辑]

火成堆積岩(英語:cumulate rock)是由岩漿中的晶體通過沉降或漂浮積聚而成的火成岩。火成堆積岩以其紋理命名;晶體積聚的紋理可以推論它們形成條件。火成堆積岩可以堆積在其他不同成分和顏色的火成堆積岩之上,造成火成堆積岩具有層狀或帶狀的外觀。

火成堆積岩的固體晶體是從岩漿室經過分離結晶過程中沉澱出來后,通常在岩漿房的底部堆積。但鈣長石斜長石比較輕,能夠漂浮在比較緻密的鎂鐵質熔體頂部堆積[33]

參考文獻[编辑]

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 77–108. ISBN 9780521880060.
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Blatt, Harvey; Tracy, Robert J. (1996). Petrology : igneous, sedimentary, and metamorphic (2nd ed.). New York: W.H. Freeman. pp. 13–20. ISBN 0716724383.
  3. ^ Le Bas, M. J.; Streckeisen, A. L. (1991). "The IUGS systematics of igneous rocks". Journal of the Geological Society. 148 (5): 825–833. Bibcode:1991JGSoc.148..825L. CiteSeerX 10.1.1.692.4446. doi:10.1144/gsjgs.148.5.0825. S2CID 28548230.
  4. ^ "Rock Classification Scheme - Vol 1 - Igneous" (PDF). British Geological Survey: Rock Classification Scheme. 1: 1–52. 1999.
  5. ^ Winter, John D (2010). Principles of Igneous and Metamorphic Petrology. United States of America: Pearson Prentice Hall. pp. 67–79. ISBN 978-0-32-159257-6.
  6. ^ 6.0 6.1 Allaby, Michael, ed. (2013). "Pluton". A dictionary of geology and earth sciences (Fourth ed.). Oxford University Press. ISBN 9780199653065.
  7. ^ "Pluton". Encyclopædia Britannica. 19 January 2018. Retrieved 17 November 2020.
  8. ^ Levin, Harold L. (2010). The earth through time (9th ed.). Hoboken, N.J.: J. Wiley. p. 59. ISBN 978-0470387740.
  9. ^ Schmincke, Hans-Ulrich (2003). Volcanism. Berlin: Springer. p. 28. ISBN 9783540436508.
  10. ^ Glazner, Allen F., Stock, Greg M. (2010) Geology Underfoot in Yosemite. Mountain Press, p. 45. ISBN 978-0-87842-568-6.
  11. ^ Oxford Academic: Crustal Contamination of Picritic Magmas During Transport Through Dikes: the Expo Intrusive Suite, Cape Smith Fold Belt, New Quebec | Journal of Petrology | Oxford Academic, accessdate: March 27, 2017.
  12. ^ 9/28/94: 9/28/94, accessdate: March 27, 2017
  13. ^ Delcamp, A.; Troll, V. R.; Vries, B. van Wyk de; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M. (2012-07-01). "Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones". Bulletin of Volcanology. 74 (5): 963–980. doi:10.1007/s00445-012-0577-1. ISSN 1432-0819. S2CID 129673436.
  14. ^ 14.0 14.1 Maynard, Steven R. (February 2005). "Laccoliths of the Ortiz porphyry belt, Santa Fe County, New Mexico" (PDF). New Mexico Geology. 27 (1). Retrieved 8 June 2020.
  15. ^ Troll, Valentin R.; Nicoll, Graeme R.; Ellam, Robert M.; Emeleus, C. Henry; Mattsson, Tobias (2021-02-09). "Petrogenesis of the Loch Bà ring-dyke and Centre 3 granites, Isle of Mull, Scotland". Contributions to Mineralogy and Petrology. 176 (2): 16. doi:10.1007/s00410-020-01763-4. ISSN 1432-0967
  16. ^ J.D.L. White andP.S. Ross(2011) Maar-diatreme volcanoes: A review,Journal of Volcanology and Geothermal Research,Volume 201, Issues 1–4,Pages 1-29, ISSN 0377-0273, https://doi.org/10.1016/j.jvolgeores.2011.01.010. (https://www.sciencedirect.com/science/article/pii/S0377027311000357页面存档备份,存于互联网档案馆))
  17. ^ "Glossary of Meteoritical Terms". New England Meteoritical Services. Retrieved August 10, 2019.
  18. ^ Descriptive Model of Solution Collapse- Breccia Pipe Uranium Deposits
  19. ^ Heylmun, Edgar B. "Breccia Pipes". Retrieved 2009-03-07.
  20. ^ Gabler, R.E. et al. (2009) Physical Geography (9th edition), Cengage Learning Inc., page 390.
  21. ^ Whittow, John (1984). Dictionary of Physical Geography. London: Penguin, 1984, p. 513. ISBN 0-14-051094-X.
  22. ^ Albert, Fay H. (1947). A Glossary of the Mining and Mineral Industry. Washington, D.C.: Government Printing Office. p. 200
  23. ^ Kikauka, Andris (1996). Geological, Geochemical, and Diamond Drilling Report on the Salal 1-6 Claims, Pemberton, B.C. (Report). Sooke, British Columbia: Geo-Facts. p. 7.
  24. ^ Gillen, C. (2003). Geology and Landscapes of Scotland (2nd edition). Dunedin. ISBN 978-1780460093.
  25. ^ Coash, John R. (1967). "Geology of the Mount Velma Quadrangle, Elko County, Nevada". Nevada Bureau of Mines Bulletin. 68: 16.
  26. ^ Hamilton MA, Pearson DG, Thompson RN, Kelly SP, Emeleus CH (1998). "Rapid eruption of Skye lavas inferred from precise U-Pb and Ar–Ar dating of the Rum and Cuillin plutonic complexes". Nature. 394 (6690): 260–263. Bibcode:1998Natur.394..260H. doi:10.1038/28361.
  27. ^ Daly, Reginald A. (1903). "The Mechanics of Igneous Intrusion". American Journal of Science. 15. Issue. 88: 269–298.
  28. ^ Glazner, A.; Bartley, J. (2006). "Is stoping a volumetrically significant pluton emplacement process?". GSA Bulletin. 118: 1185–1195. doi:10.1130/b25738.1.
  29. ^ Allen F. Glazner, John M. Bartley; Is stoping a volumetrically significant pluton emplacement process?. GSA Bulletin 2006;; 118 (9-10): 1185–1195. doi: https://doi.org/10.1130/B25738.1
  30. ^ Fowler, T. Kenneth (1997). "Timing and the nature of magmatic fabrics from structural relations around stoped blocks". Journal of Structural Geology. 19. No. 2.: 209–224.
  31. ^ Vernon, R.; Paterson, S. (1995). "Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes". GSA Bulletin. 107: 1356–1380.
  32. ^ Marsh, D. B. 1984, On the mechanics of Igneous Diapirism, Stoping and Zone melting, American Journal of Science v. 282 p 808 – 855
  33. ^ 33.0 33.1 Emeleus, C. H.; Troll, V. R. (August 2014)."The Rum Igneous Centre, Scotland". Mineralogical Magazine. 78 (4): 805–839. Bibcode:2014MinM...78..805E. doi:10.1180/minmag.2014.078.4.04. ISSN 0026-461X. S2CID 129549874
  34. ^ Glazner, Allen (May 2004). "Are plutons assembled over millions of years by amalgamation from small magma chambers?" (PDF). GSA Today. 14 4/5 (4): 4–11. doi:10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2.
  35. ^ Miller, Calvin (March 2011). "Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA". Tectonophysics. 500, 1–4 (1): 65–77. Bibcode:2011Tectp.500...65M. doi:10.1016/j.tecto.2009.07.011.