# 偏微分方程數值方法

## 方法概述

### 有限差分法

在这种方法中，函数由它们在某些网格点处的值表示，并通过这些值的差分来近似导数。

## 參考文獻

• LeVeque, Randall J. Numerical Methods for Conservation Laws. Basel: Birkhäuser Basel. 1992 [2021-11-15]. ISBN 9783764327231.
• Anderson, Dale A.; Pletcher, Richard H.; Tannehill, John C. Computational fluid mechanics and heat transfer. Series in computational and physical processes in mechanics and thermal sciences 3rd. Boca Raton: CRC Press, Taylor & Francis Group. 2013. ISBN 9781591690375.
1. ^ Pinder, George F. Numerical methods for solving partial differential equations : a comprehensive introduction for scientists and engineers. Hoboken, NJ. 2018. ISBN 978-1-119-31636-7. OCLC 1015215158.
2. ^ Rubinstein, Jacob; Pinchover, Yehuda (编), Numerical methods, An Introduction to Partial Differential Equations (Cambridge: Cambridge University Press), 2005: 309–336 [2021-11-15], ISBN 978-0-511-80122-8, doi:10.1017/cbo9780511801228.012, （原始内容存档于2018-06-16）
3. ^ Hyperbolic partial differential equation, numerical methods - Encyclopedia of Mathematics. encyclopediaofmath.org. [2021-11-15]. （原始内容存档于2022-04-07）.
4. ^ Parabolic partial differential equation, numerical methods - Encyclopedia of Mathematics. encyclopediaofmath.org. [2021-11-15]. （原始内容存档于2021-11-15）.
5. ^ Elliptic partial differential equation, numerical methods - Encyclopedia of Mathematics. encyclopediaofmath.org. [2021-11-15]. （原始内容存档于2021-11-15）.
6. ^ Evans, Gwynne. Numerical methods for partial differential equations. J. M. Blackledge, P. Yardley. London: Springer. 2000. ISBN 3-540-76125-X. OCLC 41572731.
7. ^ Grossmann, Christian. Numerical treatment of partial differential equations. Hans-Görg Roos, M. Stynes. Berlin: Springer. 2007. ISBN 978-3-540-71584-9. OCLC 191468303.
8. ^ pp 235, Spectral Methods页面存档备份，存于互联网档案馆）: evolution to complex geometries and applications to fluid dynamics, By Canuto, Hussaini, Quarteroni and Zang, Springer, 2007.
9. ^ Roman Wienands; Wolfgang Joppich. Practical Fourier analysis for multigrid methods. CRC Press. 2005: 17 [2021-11-24]. ISBN 1-58488-492-4. （原始内容存档于2022-04-02）.