傅里叶变换 (法語:Transformation de Fourier ,英語:Fourier transform ,缩写:FT)是一种线性积分变换 ,用于函数(应用上称作「信号」)在时域和频域 之间的变换。因其基本思想首先由法国 学者约瑟夫·傅里叶 系统地提出,所以以其名字来命名以示纪念。
傅里叶变换在物理学 和工程学 中有许多应用。傅里叶变换的作用是将函数分解为不同特征的正弦函数的和,如同化学分析来分析一个化合物的元素成分。对于一个函数,也可对其进行分析,来确定组成它的基本(正弦函数)成分。[1]
经过傅里叶变换生成的函数
f
^
{\displaystyle {\hat {f}}}
称作原函数
f
{\displaystyle f}
的傅里叶变换,应用意义上称作频谱 。在特定情況下,傅里叶变换是可逆的,即将
f
^
{\displaystyle {\hat {f}}}
通过逆变换可以得到其原函数
f
{\displaystyle f}
。通常情况下,
f
{\displaystyle f}
是一个实函数 ,而
f
^
{\displaystyle {\hat {f}}}
则是一个复数 值函数,其函数值 作为复数可同时表示振幅 和相位 。高斯函数 是傅里叶变换的本征函数 。
一般情况下,若「傅里叶变换」一词不加任何限定语,则指的是「连续傅里叶变换」(连续函数的傅里叶变换)。定义傅里叶变换有许多不同的方式。本文中采用如下的定义:(连续)傅里叶变换将可积 函数
f
:
R
→
C
{\displaystyle f:\mathbb {R} \rightarrow \mathbb {C} }
表示成复指数函数的积分形式或级数形式。
f
^
(
ξ
)
=
∫
−
∞
∞
f
(
x
)
e
−
2
π
i
x
ξ
d
x
{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-2\pi ix\xi }\,dx}
,
ξ
{\displaystyle \xi }
为任意实数 。
ξ
{\displaystyle \xi }
的定义域为频域。
若约定自变量
x
{\displaystyle x}
表示时间 (以秒为单位),变换变量
ξ
{\displaystyle \xi }
表示频率 (以赫兹 为单位)。在适当条件下,
f
^
{\displaystyle {\hat {f}}}
可由逆傅里叶变换 (inverse Fourier transform)由下式得到
f
{\displaystyle f}
:
f
(
x
)
=
∫
−
∞
∞
f
^
(
ξ
)
e
2
π
i
ξ
x
d
ξ
{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )\ e^{2\pi i\xi x}\,d\xi }
,
x
{\displaystyle x}
为任意实数。
x
{\displaystyle x}
的定义域为时域。
傅里叶逆定理表明
f
{\displaystyle f}
可由
f
^
{\displaystyle {\hat {f}}}
确定,傅里叶 在其1822年出版的著作《热分析理论[2] 》(法語:Théorie analytique de la chaleur )中首次引入这个定理。虽然现在标准下的证明直到很久以后才出现。
f
{\displaystyle f}
和
f
^
{\displaystyle {\hat {f}}}
常常被称为傅里叶积分对 或傅里叶变换对 。
傅里叶变换将函数的时域(红色)与频域(蓝色)相关联。频谱中的不同成分频率在频域中以峰值形式表示。
傅里叶变换源自对傅里叶级数 的研究。在对傅里叶级数的研究中,复杂的周期函数 可以用一系列简单的正弦 或余弦 波之和表示。傅里叶变换是对傅里叶级数的扩展,由它表示的函数的周期趋近于无穷。
傅里叶变换在医学 、数据科学 、物理学 、声学 、光学 、结构力学、量子力学 、数论 、组合数学 、概率论 、统计学 、信号处理 、密码学 、大氣科學 、海洋学 、通讯 、金融 等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将复杂的信号分解成具有不同振幅的单一频率分量,并以此实现滤波 等操作;进一步的,量子力学中位置空间 的波函数 的傅里叶变换是动量空间 的波函数。
基本性质 [ 编辑 ]
线性性质 [ 编辑 ]
两函数之和的傅里叶变换等于各自变换之和。严格数学描述是:若函数
f
(
x
)
{\displaystyle f\left(x\right)}
和
g
(
x
)
{\displaystyle g\left(x\right)}
的傅里叶变换
F
[
f
]
{\displaystyle {\mathcal {F}}[f]}
和
F
[
g
]
{\displaystyle {\mathcal {F}}[g]}
都存在,
α
{\displaystyle \alpha }
和
β
{\displaystyle \beta }
为任意常系数,则
F
[
α
f
+
β
g
]
=
α
F
[
f
]
+
β
F
[
g
]
{\displaystyle {\mathcal {F}}[\alpha f+\beta g]=\alpha {\mathcal {F}}[f]+\beta {\mathcal {F}}[g]}
;傅里叶变换算符
F
{\displaystyle {\mathcal {F}}}
可经归一化 成为幺正算符 。
平移性质 [ 编辑 ]
若函数
f
(
x
)
{\displaystyle f\left(x\right)}
存在傅里叶变换,则对任意实数
ω
0
{\displaystyle \omega _{0}}
,函数
f
(
x
)
e
i
ω
0
x
{\displaystyle f(x)e^{i\omega _{0}x}}
也存在傅里叶变换,且有
F
[
f
(
x
)
e
i
ω
0
x
]
=
f
^
(
ω
−
ω
0
)
{\displaystyle {\mathcal {F}}[f(x)e^{i\omega _{0}x}]={\hat {f}}(\omega -\omega _{0})}
。式中花体
F
{\displaystyle {\mathcal {F}}}
是傅里叶变换的作用算子 ,平体
f
^
{\displaystyle {\hat {f}}}
表示变换的结果(复函数),
e
{\displaystyle e}
为自然对数 的底,
i
{\displaystyle i}
为虚数 单位
−
1
{\displaystyle {\sqrt {-1}}}
。
若函数
f
(
x
)
{\displaystyle f\left(x\right)}
当
|
x
|
→
∞
{\displaystyle |x|\rightarrow \infty }
时的极限 为0,且其导函数
f
′
(
x
)
{\displaystyle f'(x)}
的傅里叶变换存在,则有
F
[
f
′
(
x
)
]
=
i
ω
F
[
f
(
x
)
]
{\displaystyle {\mathcal {F}}[f'(x)]=i\omega {\mathcal {F}}[f(x)]}
,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子
i
ω
{\displaystyle i\omega }
。更一般地,若
f
(
±
∞
)
=
f
′
(
±
∞
)
=
…
=
f
(
k
−
1
)
(
±
∞
)
=
0
{\displaystyle f(\pm \infty )=f'(\pm \infty )=\ldots =f^{(k-1)}(\pm \infty )=0}
,且
F
[
f
(
k
)
(
x
)
]
{\displaystyle {\mathcal {F}}[f^{(k)}(x)]}
存在,则
F
[
f
(
k
)
(
x
)
]
=
(
i
ω
)
k
F
[
f
]
{\displaystyle {\mathcal {F}}[f^{(k)}(x)]=(i\omega )^{k}{\mathcal {F}}[f]}
,即函数k 阶导函数 的傅里叶变换等于原函数的傅里叶变换乘以因子
(
i
ω
)
k
{\displaystyle (i\omega )^{k}}
。
若函数
f
(
x
)
{\displaystyle f\left(x\right)}
及
g
(
x
)
{\displaystyle g\left(x\right)}
都在
(
−
∞
,
+
∞
)
{\displaystyle (-\infty ,+\infty )}
上绝对可积 ,则卷积函数
f
∗
g
=
∫
−
∞
+
∞
f
(
x
−
ξ
)
g
(
ξ
)
d
ξ
{\displaystyle f*g=\int _{-\infty }^{+\infty }f(x-\xi )g(\xi )d\xi }
(或者
f
∗
g
=
∫
−
∞
+
∞
f
(
ξ
)
g
(
x
−
ξ
)
d
ξ
{\displaystyle f*g=\int _{-\infty }^{+\infty }f(\xi )g(x-\xi )d\xi }
)的傅里叶变换存在,且
F
[
f
∗
g
]
=
F
[
f
]
⋅
F
[
g
]
{\displaystyle {\mathcal {F}}[f*g]={\mathcal {F}}[f]\cdot {\mathcal {F}}[g]}
。卷积性质的逆形式为
F
−
1
[
F
(
ω
)
∗
G
(
ω
)
]
=
2
π
F
−
1
[
F
(
ω
)
]
⋅
F
−
1
[
G
(
ω
)
]
{\displaystyle {\mathcal {F}}^{-1}[F(\omega )*G(\omega )]=2\pi {\mathcal {F}}^{-1}[F(\omega )]\cdot {\mathcal {F}}^{-1}[G(\omega )]}
,即两个函数的卷积的傅里叶逆变换等于两函数各自的傅里叶逆变换的乘积乘以
2
π
{\displaystyle 2\pi }
。
若函数
f
(
x
)
{\displaystyle f\left(x\right)}
可积 且平方可积,则
∫
−
∞
+
∞
f
2
(
x
)
d
x
=
1
2
π
∫
−
∞
+
∞
|
F
(
ω
)
|
2
d
ω
{\displaystyle \int _{-\infty }^{+\infty }f^{2}(x)dx={\frac {1}{2\pi }}\int _{-\infty }^{+\infty }|F(\omega )|^{2}d\omega }
。其中
F
(
ω
)
{\displaystyle F\left(\omega \right)}
是
f
(
x
)
{\displaystyle f\left(x\right)}
的傅里叶变换。
更一般化而言,若函数
f
(
x
)
{\displaystyle f\left(x\right)}
和
g
(
x
)
{\displaystyle g\left(x\right)}
皆為平方可積函數 ,则
∫
−
∞
+
∞
f
(
x
)
g
∗
(
x
)
d
x
=
1
2
π
∫
−
∞
+
∞
F
(
ω
)
G
∗
(
ω
)
d
ω
{\displaystyle \int _{-\infty }^{+\infty }f(x)g^{*}(x)dx={\frac {1}{2\pi }}\int _{-\infty }^{+\infty }F(\omega )G^{*}(\omega )d\omega }
。其中
F
(
ω
)
{\displaystyle F\left(\omega \right)}
和
G
(
ω
)
{\displaystyle G\left(\omega \right)}
分别是
f
(
x
)
{\displaystyle f\left(x\right)}
和
g
(
x
)
{\displaystyle g\left(x\right)}
的傅里叶变换,
∗
{\displaystyle *}
代表複共軛 。
傅里叶变换的不同变种 [ 编辑 ]
傅里叶变换也可以写成角频率 形式: ω = 2πξ 其单位是弧度 每秒。
应用ξ=ω/(2π)到上述公式会成为下面的形式:
f
^
(
ω
)
=
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
.
{\displaystyle {\hat {f}}(\omega )=\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx.}
根据这一形式,(傅里叶)逆变换变为:
f
(
x
)
=
1
(
2
π
)
n
∫
R
n
f
^
(
ω
)
e
i
ω
⋅
x
d
ω
.
{\displaystyle f(x)={\frac {1}{(2\pi )^{n}}}\int _{\mathbf {R} ^{n}}{\hat {f}}(\omega )e^{i\omega \cdot x}\,d\omega .}
若不按照本文中使用的,而像这样定义傅里叶变换,那它将不再是L 2 (R n )上的一个么正变换 。另外这样的定义也使傅里叶变换与其逆变换显得不太对称。
另一个形式是把(2π )n 均匀地分开给傅里叶变换和逆变换,即定义为:
f
^
(
ω
)
=
1
(
2
π
)
n
/
2
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
{\displaystyle {\hat {f}}(\omega )={\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx}
f
(
x
)
=
1
(
2
π
)
n
/
2
∫
R
n
f
^
(
ω
)
e
i
ω
⋅
x
d
ω
.
{\displaystyle f(x)={\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}{\hat {f}}(\omega )e^{i\omega \cdot x}\,d\omega .}
根据这一形式,傅里叶变换是再次成为L 2 (R n )上的一个幺正变换。它也恢复了傅里叶变换和逆变换之间的对称。
所有三种形式的变化可以通过对正向和反向变换的复指数核取共轭来实现。核函数的符号必须是相反的。除此之外,选择是习惯问题。
常用的傅里叶变换形式总结
普通频率ξ( 赫兹)
么正变换
f
^
1
(
ξ
)
=
d
e
f
∫
R
n
f
(
x
)
e
−
2
π
i
x
⋅
ξ
d
x
=
f
^
2
(
2
π
ξ
)
=
(
2
π
)
n
/
2
f
^
3
(
2
π
ξ
)
{\displaystyle \displaystyle {\hat {f}}_{1}(\xi )\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbf {R} ^{n}}f(x)e^{-2\pi ix\cdot \xi }\,dx={\hat {f}}_{2}(2\pi \xi )=(2\pi )^{n/2}{\hat {f}}_{3}(2\pi \xi )}
f
(
x
)
=
∫
R
n
f
^
1
(
ξ
)
e
2
π
i
x
⋅
ξ
d
ξ
{\displaystyle \displaystyle f(x)=\int _{\mathbf {R} ^{n}}{\hat {f}}_{1}(\xi )e^{2\pi ix\cdot \xi }\,d\xi \ }
角频率ω( 弧度/秒)
非么正变换
f
^
2
(
ω
)
=
d
e
f
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
=
f
^
1
(
ω
2
π
)
=
(
2
π
)
n
/
2
f
^
3
(
ω
)
{\displaystyle \displaystyle {\hat {f}}_{2}(\omega )\ {\stackrel {\mathrm {def} }{=}}\int _{\mathbf {R} ^{n}}f(x)e^{-i\omega \cdot x}\,dx\ ={\hat {f}}_{1}\left({\frac {\omega }{2\pi }}\right)=(2\pi )^{n/2}\ {\hat {f}}_{3}(\omega )}
f
(
x
)
=
1
(
2
π
)
n
∫
R
n
f
^
2
(
ω
)
e
i
ω
⋅
x
d
ω
{\displaystyle \displaystyle f(x)={\frac {1}{(2\pi )^{n}}}\int _{\mathbf {R} ^{n}}{\hat {f}}_{2}(\omega )e^{i\omega \cdot x}\,d\omega \ }
么正变换
f
^
3
(
ω
)
=
d
e
f
1
(
2
π
)
n
/
2
∫
R
n
f
(
x
)
e
−
i
ω
⋅
x
d
x
=
1
(
2
π
)
n
/
2
f
^
1
(
ω
2
π
)
=
1
(
2
π
)
n
/
2
f
^
2
(
ω
)
{\displaystyle \displaystyle {\hat {f}}_{3}(\omega )\ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}f(x)\ e^{-i\omega \cdot x}\,dx={\frac {1}{(2\pi )^{n/2}}}{\hat {f}}_{1}\left({\frac {\omega }{2\pi }}\right)={\frac {1}{(2\pi )^{n/2}}}{\hat {f}}_{2}(\omega )}
f
(
x
)
=
1
(
2
π
)
n
/
2
∫
R
n
f
^
3
(
ω
)
e
i
ω
⋅
x
d
ω
{\displaystyle \displaystyle f(x)={\frac {1}{(2\pi )^{n/2}}}\int _{\mathbf {R} ^{n}}{\hat {f}}_{3}(\omega )e^{i\omega \cdot x}\,d\omega \ }
如上所讨论的,一个随机变量的特征函数 是相同的傅里叶变换斯蒂尔切斯其分布的测量,但在这种情况下它是典型采取不同的惯例为常数。通常情况下特征函数的定义
E
(
e
i
t
⋅
X
)
=
∫
e
i
t
⋅
x
d
μ
X
(
x
)
{\displaystyle E(e^{it\cdot X})=\int e^{it\cdot x}d\mu _{X}(x)}
在上面“非统一角频率”形式的情况下,存在的2π无因子出现在任一积分的,或在指数。不同于任何约定的上面出现的,本公约采取的指数符号相反。
傅里叶级数 [ 编辑 ]
连续形式的傅里叶变换其实是傅里叶级数(Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:
f
(
x
)
=
∑
n
=
−
∞
∞
F
n
e
i
n
x
,
{\displaystyle f(x)=\sum _{n=-\infty }^{\infty }F_{n}\,e^{inx},}
其中
F
n
{\displaystyle F_{n}}
为复振幅。对于实值函数,函数的傅里叶级数可以写成:
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
[
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
]
{\displaystyle f(x)={\frac {a_{0}}{2}}+\sum _{n=1}^{\infty }\left[a_{n}\cos(nx)+b_{n}\sin(nx)\right]}
其中a n 和b n 是实 频率分量的振幅。
傅里叶分析 最初是研究周期性 现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期 为无限长。
离散时间傅里叶变换 [ 编辑 ]
离散傅里叶变换是离散时间傅里叶变换 (DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆轉換。
离散傅里叶变换 [ 编辑 ]
为了在科学计算和数字信号处理 等领域使用计算机进行傅里叶变换,必须将函数x n 定义在离散 点而非连续域内,且须满足有限性 或周期性 条件。这种情况下,使用离散傅里叶变换,将函数x n 表示为下面的求和形式:
X
k
=
∑
n
=
0
N
−
1
x
n
e
−
i
2
π
N
k
n
k
=
0
,
…
,
N
−
1
{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}e^{-i{\frac {2\pi }{N}}kn}\qquad k=0,\dots ,N-1}
其中
X
k
{\displaystyle X_{k}}
是傅里叶振幅。直接使用这个公式计算的计算复杂度 为
O
(
n
2
)
{\displaystyle {\mathcal {O}}(n^{2})}
,而快速傅里叶变换 (FFT)可以将复杂度改进为
O
(
n
log
n
)
{\displaystyle {\mathcal {O}}(n\log n)}
。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。
在阿贝尔群上的统一描述 [ 编辑 ]
以上的傅里叶变换都可以被统一描述为任意局部紧致 的阿贝尔群 上的傅里叶变换。这一问题属于调和分析 的范畴。在调和分析中,一个变换从一个群变换到它的对偶群 (dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里亚金对偶性 (Pontryagin duality)中的介绍。
时频分析变换 [ 编辑 ]
小波变换 ,Chirplet变换 和分数傅里叶变换 的都是为了得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理 的限制。
傅里叶变换家族 [ 编辑 ]
主条目:傅立叶变换家族中的关系
下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性。反之连续则意味着在对应域的信号的非周期性。下表给出详细的情形:
常用傅里叶变换表 [ 编辑 ]
下面的表记录了一些封闭形式的傅立叶变换。对于函数
f
(
x
)
{\displaystyle f(x)}
,
g
(
x
)
{\displaystyle g(x)}
和
g
(
x
)
{\displaystyle g(x)}
,它们的傅立叶变换分别表示为
f
^
{\displaystyle {\hat {f}}}
,
g
^
{\displaystyle {\hat {g}}}
和
h
^
{\displaystyle {\hat {h}}}
。只包含了三种最常见的形式。注意条目105给出了一个函数的傅里叶变换与其原函数,这可以看作是傅里叶变换及其逆变换的关系。
函数关系 [ 编辑 ]
下表列出的常用的傅里叶变换对可以在Erdélyi (1954 )或Kammler (2000 ,appendix)中找到。
函数
傅立叶变换 么正,普通的频率
傅立叶变换 么正,角频率
傅立叶变换 非么正,角频率
注释
f
(
x
)
{\displaystyle \displaystyle f(x)\,}
f
^
(
ξ
)
=
{\displaystyle \displaystyle {\hat {f}}(\xi )=}
∫
−
∞
∞
f
(
x
)
e
−
2
π
i
x
ξ
d
x
{\displaystyle \displaystyle \int _{-\infty }^{\infty }f(x)e^{-2\pi ix\xi }\,dx}
f
^
(
ω
)
=
{\displaystyle \displaystyle {\hat {f}}(\omega )=}
1
2
π
∫
−
∞
∞
f
(
x
)
e
−
i
ω
x
d
x
{\displaystyle \displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx}
f
^
(
ν
)
=
{\displaystyle \displaystyle {\hat {f}}(\nu )=}
∫
−
∞
∞
f
(
x
)
e
−
i
ν
x
d
x
{\displaystyle \displaystyle \int _{-\infty }^{\infty }f(x)e^{-i\nu x}\,dx}
基本定义
101
a
⋅
f
(
x
)
+
b
⋅
g
(
x
)
{\displaystyle \displaystyle a\cdot f(x)+b\cdot g(x)\,}
a
⋅
f
^
(
ξ
)
+
b
⋅
g
^
(
ξ
)
{\displaystyle \displaystyle a\cdot {\hat {f}}(\xi )+b\cdot {\hat {g}}(\xi )\,}
a
⋅
f
^
(
ω
)
+
b
⋅
g
^
(
ω
)
{\displaystyle \displaystyle a\cdot {\hat {f}}(\omega )+b\cdot {\hat {g}}(\omega )\,}
a
⋅
f
^
(
ν
)
+
b
⋅
g
^
(
ν
)
{\displaystyle \displaystyle a\cdot {\hat {f}}(\nu )+b\cdot {\hat {g}}(\nu )\,}
线性性质
102
f
(
x
−
a
)
{\displaystyle \displaystyle f(x-a)\,}
e
−
2
π
i
a
ξ
f
^
(
ξ
)
{\displaystyle \displaystyle e^{-2\pi ia\xi }{\hat {f}}(\xi )\,}
e
−
i
a
ω
f
^
(
ω
)
{\displaystyle \displaystyle e^{-ia\omega }{\hat {f}}(\omega )\,}
e
−
i
a
ν
f
^
(
ν
)
{\displaystyle \displaystyle e^{-ia\nu }{\hat {f}}(\nu )\,}
时域平移
103
e
2
π
i
a
x
f
(
x
)
{\displaystyle \displaystyle e^{2\pi iax}f(x)\,}
f
^
(
ξ
−
a
)
{\displaystyle \displaystyle {\hat {f}}\left(\xi -a\right)\,}
f
^
(
ω
−
2
π
a
)
{\displaystyle \displaystyle {\hat {f}}(\omega -2\pi a)\,}
f
^
(
ν
−
2
π
a
)
{\displaystyle \displaystyle {\hat {f}}(\nu -2\pi a)\,}
频域平移,变换102的频域对应
104
f
(
a
x
)
{\displaystyle \displaystyle f(ax)\,}
1
|
a
|
f
^
(
ξ
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\xi }{a}}\right)\,}
1
|
a
|
f
^
(
ω
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}
1
|
a
|
f
^
(
ν
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\nu }{a}}\right)\,}
在时域中定标。如果
|
a
|
{\displaystyle \displaystyle |a|\,}
值较大,则
f
(
a
x
)
{\displaystyle \displaystyle f(ax)\,}
会收缩到原点附近,而
1
|
a
|
f
^
(
ω
a
)
{\displaystyle \displaystyle {\frac {1}{|a|}}{\hat {f}}\left({\frac {\omega }{a}}\right)\,}
会扩散并变得扁平。当
|
a
|
{\displaystyle \displaystyle |a|\,}
趋向无穷时,
f
(
a
x
)
{\displaystyle \displaystyle f(ax)\,}
成为狄拉克δ函数 。
105
f
^
(
x
)
{\displaystyle \displaystyle {\hat {f}}(x)\,}
f
(
−
ξ
)
{\displaystyle \displaystyle f(-\xi )\,}
f
(
−
ω
)
{\displaystyle \displaystyle f(-\omega )\,}
2
π
f
(
−
ν
)
{\displaystyle \displaystyle 2\pi f(-\nu )\,}
傅里叶变换的二元性性质。这里
f
^
{\displaystyle {\hat {f}}}
的计算需要运用与傅里叶变换那一列同样的方法。通过交换变量
x
{\displaystyle x}
和
ξ
{\displaystyle \xi }
或
ω
{\displaystyle \omega }
或
ν
{\displaystyle \nu }
得到。
106
d
n
f
(
x
)
d
x
n
{\displaystyle \displaystyle {\frac {d^{n}f(x)}{dx^{n}}}\,}
(
2
π
i
ξ
)
n
f
^
(
ξ
)
{\displaystyle \displaystyle (2\pi i\xi )^{n}{\hat {f}}(\xi )\,}
(
i
ω
)
n
f
^
(
ω
)
{\displaystyle \displaystyle (i\omega )^{n}{\hat {f}}(\omega )\,}
(
i
ν
)
n
f
^
(
ν
)
{\displaystyle \displaystyle (i\nu )^{n}{\hat {f}}(\nu )\,}
傅里叶变换的微分性质
107
x
n
f
(
x
)
{\displaystyle \displaystyle x^{n}f(x)\,}
(
i
2
π
)
n
d
n
f
^
(
ξ
)
d
ξ
n
{\displaystyle \displaystyle \left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}{\hat {f}}(\xi )}{d\xi ^{n}}}\,}
i
n
d
n
f
^
(
ω
)
d
ω
n
{\displaystyle \displaystyle i^{n}{\frac {d^{n}{\hat {f}}(\omega )}{d\omega ^{n}}}}
i
n
d
n
f
^
(
ν
)
d
ν
n
{\displaystyle \displaystyle i^{n}{\frac {d^{n}{\hat {f}}(\nu )}{d\nu ^{n}}}}
变换106的频域对应
108
(
f
∗
g
)
(
x
)
{\displaystyle \displaystyle (f*g)(x)\,}
f
^
(
ξ
)
g
^
(
ξ
)
{\displaystyle \displaystyle {\hat {f}}(\xi ){\hat {g}}(\xi )\,}
2
π
f
^
(
ω
)
g
^
(
ω
)
{\displaystyle \displaystyle {\sqrt {2\pi }}{\hat {f}}(\omega ){\hat {g}}(\omega )\,}
f
^
(
ν
)
g
^
(
ν
)
{\displaystyle \displaystyle {\hat {f}}(\nu ){\hat {g}}(\nu )\,}
记号
f
∗
g
{\displaystyle \displaystyle f*g\,}
表示
f
{\displaystyle f}
和
g
{\displaystyle g}
的卷积—这就是卷积定理
109
f
(
x
)
g
(
x
)
{\displaystyle \displaystyle f(x)g(x)\,}
(
f
^
∗
g
^
)
(
ξ
)
{\displaystyle \displaystyle ({\hat {f}}*{\hat {g}})(\xi )\,}
(
f
^
∗
g
^
)
(
ω
)
2
π
{\displaystyle \displaystyle ({\hat {f}}*{\hat {g}})(\omega ) \over {\sqrt {2\pi }}\,}
1
2
π
(
f
^
∗
g
^
)
(
ν
)
{\displaystyle \displaystyle {\frac {1}{2\pi }}({\hat {f}}*{\hat {g}})(\nu )\,}
变换108的频域对应。
110
当
f
(
x
)
{\displaystyle \displaystyle f(x)}
是实变函数
f
^
(
−
ξ
)
=
f
^
(
ξ
)
¯
{\displaystyle \displaystyle {\hat {f}}(-\xi )={\overline {{\hat {f}}(\xi )}}\,}
f
^
(
−
ω
)
=
f
^
(
ω
)
¯
{\displaystyle \displaystyle {\hat {f}}(-\omega )={\overline {{\hat {f}}(\omega )}}\,}
f
^
(
−
ν
)
=
f
^
(
ν
)
¯
{\displaystyle \displaystyle {\hat {f}}(-\nu )={\overline {{\hat {f}}(\nu )}}\,}
埃尔米特对称。
z
¯
{\displaystyle \displaystyle {\overline {z}}\,}
表示复共轭 。
111
当
f
(
x
)
{\displaystyle \displaystyle f(x)}
是实偶函数
f
^
(
ω
)
{\displaystyle \displaystyle {\hat {f}}(\omega )}
,
f
^
(
ξ
)
{\displaystyle \displaystyle {\hat {f}}(\xi )}
和
f
^
(
ν
)
{\displaystyle \displaystyle {\hat {f}}(\nu )\,}
都是实偶函数 。
112
当
f
(
x
)
{\displaystyle \displaystyle f(x)}
是实奇函数
f
^
(
ω
)
{\displaystyle \displaystyle {\hat {f}}(\omega )}
,
f
^
(
ξ
)
{\displaystyle \displaystyle {\hat {f}}(\xi )}
和
f
^
(
ν
)
{\displaystyle \displaystyle {\hat {f}}(\nu )}
都是虚 奇函数 。
113
f
(
x
)
¯
{\displaystyle \displaystyle {\overline {f(x)}}}
f
^
(
−
ξ
)
¯
{\displaystyle \displaystyle {\overline {{\hat {f}}(-\xi )}}}
f
^
(
−
ω
)
¯
{\displaystyle \displaystyle {\overline {{\hat {f}}(-\omega )}}}
f
^
(
−
ν
)
¯
{\displaystyle \displaystyle {\overline {{\hat {f}}(-\nu )}}}
复共轭 ,110的一般化
平方可积函数 [ 编辑 ]
时域信号
角频率表示的 傅里叶变换
弧频率表示的 傅里叶变换
注释
g
(
t
)
≡
{\displaystyle g(t)\!\equiv \!}
1
2
π
∫
−
∞
∞
G
(
ω
)
e
i
ω
t
d
ω
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\!\!G(\omega )e^{i\omega t}\mathrm {d} \omega \,}
G
(
ω
)
≡
{\displaystyle G(\omega )\!\equiv \!}
1
2
π
∫
−
∞
∞
g
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\!\!g(t)e^{-i\omega t}\mathrm {d} t\,}
G
(
f
)
≡
{\displaystyle G(f)\!\equiv }
∫
−
∞
∞
g
(
t
)
e
−
i
2
π
f
t
d
t
{\displaystyle \int _{-\infty }^{\infty }\!\!g(t)e^{-i2\pi ft}\mathrm {d} t\,}
10
r
e
c
t
(
a
t
)
{\displaystyle \mathrm {rect} (at)\,}
1
2
π
a
2
⋅
s
i
n
c
(
ω
2
π
a
)
{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \mathrm {sinc} \left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
s
i
n
c
(
f
a
)
{\displaystyle {\frac {1}{|a|}}\cdot \mathrm {sinc} \left({\frac {f}{a}}\right)}
矩形脉冲 和归一化的sinc函数
11
s
i
n
c
(
a
t
)
{\displaystyle \mathrm {sinc} (at)\,}
1
2
π
a
2
⋅
r
e
c
t
(
ω
2
π
a
)
{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \mathrm {rect} \left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
r
e
c
t
(
f
a
)
{\displaystyle {\frac {1}{|a|}}\cdot \mathrm {rect} \left({\frac {f}{a}}\right)\,}
变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数 是这类滤波器对反因果 冲击的响应。
12
s
i
n
c
2
(
a
t
)
{\displaystyle \mathrm {sinc} ^{2}(at)\,}
1
2
π
a
2
⋅
t
r
i
(
ω
2
π
a
)
{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \mathrm {tri} \left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
t
r
i
(
f
a
)
{\displaystyle {\frac {1}{|a|}}\cdot \mathrm {tri} \left({\frac {f}{a}}\right)}
tri 是三角形函数
13
t
r
i
(
a
t
)
{\displaystyle \mathrm {tri} (at)\,}
1
2
π
a
2
⋅
s
i
n
c
2
(
ω
2
π
a
)
{\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \mathrm {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)}
1
|
a
|
⋅
s
i
n
c
2
(
f
a
)
{\displaystyle {\frac {1}{|a|}}\cdot \mathrm {sinc} ^{2}\left({\frac {f}{a}}\right)\,}
变换12的频域对应
14
e
−
α
t
2
{\displaystyle e^{-\alpha t^{2}}\,}
1
2
α
⋅
e
−
ω
2
4
α
{\displaystyle {\frac {1}{\sqrt {2\alpha }}}\cdot e^{-{\frac {\omega ^{2}}{4\alpha }}}}
π
α
⋅
e
−
(
π
f
)
2
α
{\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\cdot e^{-{\frac {(\pi f)^{2}}{\alpha }}}}
高斯函数
exp
(
−
α
t
2
)
{\displaystyle \exp(-\alpha t^{2})}
的傅里叶变换是其本身;只有当
R
e
(
α
)
>
0
{\displaystyle \mathrm {Re} (\alpha )>0}
时,该函数可积的
15
e
i
a
t
2
=
e
−
α
t
2
|
α
=
−
i
a
{\displaystyle e^{iat^{2}}=\left.e^{-\alpha t^{2}}\right|_{\alpha =-ia}\,}
1
2
a
⋅
e
−
i
(
ω
2
4
a
−
π
4
)
{\displaystyle {\frac {1}{\sqrt {2a}}}\cdot e^{-i\left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}}
π
a
⋅
e
−
i
(
π
2
f
2
a
−
π
4
)
{\displaystyle {\sqrt {\frac {\pi }{a}}}\cdot e^{-i\left({\frac {\pi ^{2}f^{2}}{a}}-{\frac {\pi }{4}}\right)}}
光学 领域应用较多
16
cos
(
a
t
2
)
{\displaystyle \cos(at^{2})\,}
1
2
a
cos
(
ω
2
4
a
−
π
4
)
{\displaystyle {\frac {1}{\sqrt {2a}}}\cos \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}
π
a
cos
(
π
2
f
2
a
−
π
4
)
{\displaystyle {\sqrt {\frac {\pi }{a}}}\cos \left({\frac {\pi ^{2}f^{2}}{a}}-{\frac {\pi }{4}}\right)}
17
sin
(
a
t
2
)
{\displaystyle \sin(at^{2})\,}
−
1
2
a
sin
(
ω
2
4
a
−
π
4
)
{\displaystyle {\frac {-1}{\sqrt {2a}}}\sin \left({\frac {\omega ^{2}}{4a}}-{\frac {\pi }{4}}\right)}
−
π
a
sin
(
π
2
f
2
a
−
π
4
)
{\displaystyle -{\sqrt {\frac {\pi }{a}}}\sin \left({\frac {\pi ^{2}f^{2}}{a}}-{\frac {\pi }{4}}\right)}
18
e
−
a
|
t
|
{\displaystyle \mathrm {e} ^{-a|t|}\,}
2
π
⋅
a
a
2
+
ω
2
{\displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {a}{a^{2}+\omega ^{2}}}}
2
a
a
2
+
4
π
2
f
2
{\displaystyle {\frac {2a}{a^{2}+4\pi ^{2}f^{2}}}}
a>0
19
1
|
t
|
{\displaystyle {\frac {1}{\sqrt {|t|}}}\,}
1
|
ω
|
{\displaystyle {\frac {1}{\sqrt {|\omega |}}}}
1
|
f
|
{\displaystyle {\frac {1}{\sqrt {|f|}}}}
变换本身就是一个公式
20
J
0
(
t
)
{\displaystyle J_{0}(t)\,}
2
π
⋅
r
e
c
t
(
ω
2
)
1
−
ω
2
{\displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {\mathrm {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}
2
⋅
r
e
c
t
(
π
f
)
1
−
4
π
2
f
2
{\displaystyle {\frac {2\cdot \mathrm {rect} (\pi f)}{\sqrt {1-4\pi ^{2}f^{2}}}}}
J0 (t) 是0阶第一类贝塞尔函数 。
21
J
n
(
t
)
{\displaystyle J_{n}(t)\,}
2
π
(
−
i
)
n
T
n
(
ω
)
r
e
c
t
(
ω
2
)
1
−
ω
2
{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {(-i)^{n}T_{n}(\omega )\mathrm {rect} \left({\frac {\omega }{2}}\right)}{\sqrt {1-\omega ^{2}}}}}
2
(
−
i
)
n
T
n
(
2
π
f
)
r
e
c
t
(
π
f
)
1
−
4
π
2
f
2
{\displaystyle {\frac {2(-i)^{n}T_{n}(2\pi f)\mathrm {rect} (\pi f)}{\sqrt {1-4\pi ^{2}f^{2}}}}}
上一个变换的推广形式; Tn (t) 是第一类切比雪夫多项式 。
22
J
n
(
t
)
t
{\displaystyle {\frac {J_{n}(t)}{t}}\,}
2
π
i
n
(
−
i
)
n
⋅
U
n
−
1
(
ω
)
{\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {i}{n}}(-i)^{n}\cdot U_{n-1}(\omega )\,}
⋅
1
−
ω
2
r
e
c
t
(
ω
2
)
{\displaystyle \cdot \ {\sqrt {1-\omega ^{2}}}\mathrm {rect} \left({\frac {\omega }{2}}\right)}
2
i
n
(
−
i
)
n
⋅
U
n
−
1
(
2
π
f
)
{\displaystyle {\frac {2\mathrm {i} }{n}}(-i)^{n}\cdot U_{n-1}(2\pi f)\,}
⋅
1
−
4
π
2
f
2
r
e
c
t
(
π
f
)
{\displaystyle \cdot \ {\sqrt {1-4\pi ^{2}f^{2}}}\mathrm {rect} (\pi f)}
Un (t) 是第二类切比雪夫多项式 。
时域信号
角频率表示的 傅里叶变换
弧频率表示的 傅里叶变换
注释
g
(
t
)
≡
{\displaystyle g(t)\!\equiv \!}
1
2
π
∫
−
∞
∞
G
(
ω
)
e
i
ω
t
d
ω
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\!\!G(\omega )e^{i\omega t}d\omega \,}
G
(
ω
)
≡
{\displaystyle G(\omega )\!\equiv \!}
1
2
π
∫
−
∞
∞
g
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\!\!g(t)e^{-i\omega t}dt\,}
G
(
f
)
≡
{\displaystyle G(f)\!\equiv }
∫
−
∞
∞
g
(
t
)
e
−
i
2
π
f
t
d
t
{\displaystyle \int _{-\infty }^{\infty }\!\!g(t)e^{-i2\pi ft}dt\,}
基本定义
23
1
{\displaystyle 1\,}
2
π
⋅
δ
(
ω
)
{\displaystyle {\sqrt {2\pi }}\cdot \delta (\omega )\,}
δ
(
f
)
{\displaystyle \delta (f)\,}
δ
(
ω
)
{\displaystyle \delta (\omega )}
代表狄拉克δ函数 分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
24
δ
(
t
)
{\displaystyle \delta (t)\,}
1
2
π
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\,}
1
{\displaystyle 1\,}
变换23的频域对应
25
e
i
a
t
{\displaystyle e^{iat}\,}
2
π
⋅
δ
(
ω
−
a
)
{\displaystyle {\sqrt {2\pi }}\cdot \delta (\omega -a)\,}
δ
(
f
−
a
2
π
)
{\displaystyle \delta (f-{\frac {a}{2\pi }})\,}
由变换103和23得到
26
cos
(
a
t
)
{\displaystyle \cos(at)\,}
2
π
δ
(
ω
−
a
)
+
δ
(
ω
+
a
)
2
{\displaystyle {\sqrt {2\pi }}{\frac {\delta (\omega \!-\!a)\!+\!\delta (\omega \!+\!a)}{2}}\,}
δ
(
f
−
a
2
π
)
+
δ
(
f
+
a
2
π
)
2
{\displaystyle {\frac {\delta (f\!-\!{\begin{matrix}{\frac {a}{2\pi }}\end{matrix}})\!+\!\delta (f\!+\!{\begin{matrix}{\frac {a}{2\pi }}\end{matrix}})}{2}}\,}
由变换101和25得到,应用了欧拉公式 :
cos
(
a
t
)
=
(
e
i
a
t
+
e
−
i
a
t
)
/
2.
{\displaystyle \cos(at)=(e^{iat}+e^{-iat})/2.}
27
sin
(
a
t
)
{\displaystyle \sin(at)\,}
2
π
δ
(
ω
−
a
)
−
δ
(
ω
+
a
)
2
i
{\displaystyle {\sqrt {2\pi }}{\frac {\delta (\omega \!-\!a)\!-\!\delta (\omega \!+\!a)}{2i}}\,}
δ
(
f
−
a
2
π
)
−
δ
(
f
+
a
2
π
)
2
i
{\displaystyle {\frac {\delta (f\!-\!{\begin{matrix}{\frac {a}{2\pi }}\end{matrix}})\!-\!\delta (f\!+\!{\begin{matrix}{\frac {a}{2\pi }}\end{matrix}})}{2i}}\,}
由变换101和25得到
28
t
n
{\displaystyle t^{n}\,}
i
n
2
π
δ
(
n
)
(
ω
)
{\displaystyle i^{n}{\sqrt {2\pi }}\delta ^{(n)}(\omega )\,}
(
i
2
π
)
n
δ
(
n
)
(
f
)
{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}\delta ^{(n)}(f)\,}
这里,
n
{\displaystyle n}
是一个自然数 .
δ
(
n
)
(
ω
)
{\displaystyle \delta ^{(n)}(\omega )}
是狄拉克δ函数分布的
n
{\displaystyle n}
阶微分。这个变换是根据变换107和24得到的。将此变换与101结合使用,我们可以变换所有多項式 函数。
29
1
t
{\displaystyle {\frac {1}{t}}\,}
−
i
π
2
sgn
(
ω
)
{\displaystyle -i{\sqrt {\frac {\pi }{2}}}\operatorname {sgn}(\omega )\,}
−
i
π
⋅
sgn
(
f
)
{\displaystyle -i\pi \cdot \operatorname {sgn}(f)\,}
此处
sgn
(
ω
)
{\displaystyle \operatorname {sgn}(\omega )}
为符号函数 ;注意此变换与变换107和24是一致的.
30
1
t
n
{\displaystyle {\frac {1}{t^{n}}}\,}
−
i
π
2
⋅
(
−
i
ω
)
n
−
1
(
n
−
1
)
!
sgn
(
ω
)
{\displaystyle -i{\begin{matrix}{\sqrt {\frac {\pi }{2}}}\cdot {\frac {(-i\omega )^{n-1}}{(n-1)!}}\end{matrix}}\operatorname {sgn}(\omega )\,}
−
i
π
(
−
i
2
π
f
)
n
−
1
(
n
−
1
)
!
sgn
(
f
)
{\displaystyle -i\pi {\begin{matrix}{\frac {(-i2\pi f)^{n-1}}{(n-1)!}}\end{matrix}}\operatorname {sgn}(f)\,}
变换29的推广
31
sgn
(
t
)
{\displaystyle \operatorname {sgn}(t)\,}
2
π
⋅
1
i
ω
{\displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {1}{i\ \omega }}\,}
1
i
π
f
{\displaystyle {\frac {1}{i\pi f}}\,}
变换29的频域对应
32
u
(
t
)
{\displaystyle u(t)\,}
π
2
(
1
i
π
ω
+
δ
(
ω
)
)
{\displaystyle {\sqrt {\frac {\pi }{2}}}\left({\frac {1}{i\pi \omega }}+\delta (\omega )\right)\,}
1
2
(
1
i
π
f
+
δ
(
f
)
)
{\displaystyle {\frac {1}{2}}\left({\frac {1}{i\pi f}}+\delta (f)\right)\,}
此处
u
(
t
)
{\displaystyle u(t)}
是单位阶跃函数 ;此变换根据变换101和31得到.
33
e
−
a
t
u
(
t
)
{\displaystyle e^{-at}u(t)\,}
1
2
π
(
a
+
i
ω
)
{\displaystyle {\frac {1}{{\sqrt {2\pi }}(a+i\omega )}}}
1
a
+
i
2
π
f
{\displaystyle {\frac {1}{a+i2\pi f}}}
u
(
t
)
{\displaystyle u(t)}
是单位阶跃函数 ,且
a
>
0
{\displaystyle a>0}
.
34
∑
n
=
−
∞
∞
δ
(
t
−
n
T
)
{\displaystyle \sum _{n=-\infty }^{\infty }\delta (t-nT)\,}
2
π
T
∑
k
=
−
∞
∞
δ
(
ω
−
k
2
π
T
)
{\displaystyle {\begin{matrix}{\frac {\sqrt {2\pi }}{T}}\end{matrix}}\sum _{k=-\infty }^{\infty }\delta \left(\omega -k{\begin{matrix}{\frac {2\pi }{T}}\end{matrix}}\right)\,}
1
T
∑
k
=
−
∞
∞
δ
(
f
−
k
T
)
{\displaystyle {\frac {1}{T}}\sum _{k=-\infty }^{\infty }\delta \left(f-{\frac {k}{T}}\right)\,}
狄拉克梳状函数 ——有助于解释或理解从连续到离散时间 的转变.
二元函数 [ 编辑 ]
时域信号
傅立叶变换 单一,普通频率
傅立叶变换 么正,角频率
傅立叶变换 非么正,角频率
400
f
(
x
,
y
)
{\displaystyle \displaystyle f(x,y)}
f
^
(
ξ
x
,
ξ
y
)
=
{\displaystyle \displaystyle {\hat {f}}(\xi _{x},\xi _{y})=}
∬
f
(
x
,
y
)
e
−
2
π
i
(
ξ
x
x
+
ξ
y
y
)
d
x
d
y
{\displaystyle \displaystyle \iint f(x,y)e^{-2\pi i(\xi _{x}x+\xi _{y}y)}\,dx\,dy}
f
^
(
ω
x
,
ω
y
)
=
{\displaystyle \displaystyle {\hat {f}}(\omega _{x},\omega _{y})=}
1
2
π
∬
f
(
x
,
y
)
e
−
i
(
ω
x
x
+
ω
y
y
)
d
x
d
y
{\displaystyle \displaystyle {\frac {1}{2\pi }}\iint f(x,y)e^{-i(\omega _{x}x+\omega _{y}y)}\,dx\,dy}
f
^
(
ν
x
,
ν
y
)
=
{\displaystyle \displaystyle {\hat {f}}(\nu _{x},\nu _{y})=}
∬
f
(
x
,
y
)
e
−
i
(
ν
x
x
+
ν
y
y
)
d
x
d
y
{\displaystyle \displaystyle \iint f(x,y)e^{-i(\nu _{x}x+\nu _{y}y)}\,dx\,dy}
401
e
−
π
(
a
2
x
2
+
b
2
y
2
)
{\displaystyle \displaystyle e^{-\pi \left(a^{2}x^{2}+b^{2}y^{2}\right)}}
1
|
a
b
|
e
−
π
(
ξ
x
2
/
a
2
+
ξ
y
2
/
b
2
)
{\displaystyle \displaystyle {\frac {1}{|ab|}}e^{-\pi \left(\xi _{x}^{2}/a^{2}+\xi _{y}^{2}/b^{2}\right)}}
1
2
π
⋅
|
a
b
|
e
−
(
ω
x
2
/
a
2
+
ω
y
2
/
b
2
)
4
π
{\displaystyle \displaystyle {\frac {1}{2\pi \cdot |ab|}}e^{\frac {-\left(\omega _{x}^{2}/a^{2}+\omega _{y}^{2}/b^{2}\right)}{4\pi }}}
1
|
a
b
|
e
−
(
ν
x
2
/
a
2
+
ν
y
2
/
b
2
)
4
π
{\displaystyle \displaystyle {\frac {1}{|ab|}}e^{\frac {-\left(\nu _{x}^{2}/a^{2}+\nu _{y}^{2}/b^{2}\right)}{4\pi }}}
402
c
i
r
c
(
x
2
+
y
2
)
{\displaystyle \displaystyle \mathrm {circ} ({\sqrt {x^{2}+y^{2}}})}
J
1
(
2
π
ξ
x
2
+
ξ
y
2
)
ξ
x
2
+
ξ
y
2
{\displaystyle \displaystyle {\frac {J_{1}\left(2\pi {\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}\right)}{\sqrt {\xi _{x}^{2}+\xi _{y}^{2}}}}}
J
1
(
ω
x
2
+
ω
y
2
)
ω
x
2
+
ω
y
2
{\displaystyle \displaystyle {\frac {J_{1}\left({\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}\right)}{\sqrt {\omega _{x}^{2}+\omega _{y}^{2}}}}}
2
π
J
1
(
ν
x
2
+
ν
y
2
)
ν
x
2
+
ν
y
2
{\displaystyle \displaystyle {\frac {2\pi J_{1}\left({\sqrt {\nu _{x}^{2}+\nu _{y}^{2}}}\right)}{\sqrt {\nu _{x}^{2}+\nu _{y}^{2}}}}}
注释
400: 变量
ξ
x
{\displaystyle \xi _{x}}
、
ξ
y
{\displaystyle \xi _{y}}
、
ω
x
{\displaystyle \omega _{x}}
、
ω
y
{\displaystyle \omega _{y}}
、
ν
x
{\displaystyle \nu _{x}}
、
ν
y
{\displaystyle \nu _{y}}
为实数。二重积分是对整个平面积分。
401: 这两个函数都是高斯函数 ,而且可能不具有单位体积。
402: 此圆有单位半径,如果把
circ
(
t
)
{\displaystyle {\text{circ}}(t)}
认作阶梯函数
u
(
1
−
t
)
{\displaystyle u(1-t)}
; Airy分布用
J
1
{\displaystyle J_{1}}
(一阶第一类贝塞尔函数 )表达。(Stein & Weiss 1971 ,Thm. IV.3.3)
三元函数 [ 编辑 ]
时域信号
角频率表示的 傅里叶变换
弧频率表示的 傅里叶变换
注释
c
i
r
c
(
x
2
+
y
2
+
z
2
)
{\displaystyle \mathrm {circ} ({\sqrt {x^{2}+y^{2}+z^{2}}})}
2
π
⋅
sin
[
ω
]
−
2
π
f
r
cos
[
ω
]
ω
3
{\displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {\sin[\omega ]-2\pi f_{r}\cos[\omega ]}{\omega ^{3}}}}
4
π
sin
[
2
π
f
r
]
−
2
π
f
r
cos
[
2
π
f
r
]
(
2
π
f
r
)
3
{\displaystyle 4\pi {\frac {\sin[2\pi f_{r}]-2\pi f_{r}\cos[2\pi f_{r}]}{(2\pi f_{r})^{3}}}}
此球有单位半径;fr 是频率矢量的量值{fx ,fy ,fz }.
參考資料 [ 编辑 ]
Ronald Newbold Bracewell. The Fourier Transform and Its Applications [傅里叶变换及其应用] 3. Boston: McGraw Hill . 2000 (英语) .
陳錫冠, 曾致煌. 工程數學. 高立出版社. ISBN 957-584-377-0 (中文(臺灣)) . .
Erdélyi, Arthur (编), Tables of Integral Transforms [积分变换表] 1 , New York: McGraw-Hill, 1954 (英语)
Kammler, David, A First Course in Fourier Analysis [傅立叶分析入门课程], Prentice Hall , 2000, ISBN 0-13-578782-3 (英语)
Stein, Elias ; Weiss, Guido, Introduction to Fourier Analysis on Euclidean Spaces [欧几里得空间上的傅立叶分析导论] , Princeton, N.J.: Princeton University Press , 1971 [2014-10-31 ] , ISBN 978-0-691-08078-9 , (原始内容存档 于2014-03-28) (英语) .
Stein, Elias; Rami, Shakarchi, Fourier Analysis: An Introduction [傅立叶分析:导论], Princeton Lectures in Analysis 1, Princeton University Press, 2003, ISBN 0-691-11384-X (英语) .
Stein, Elias; Rami, Shakarchi, Fourier Analysis: An Introduction [傅立叶分析导论], 数学经典英文教材系列 1, 中国世界图书出版公司 , 2006, ISBN 9787506272872 (英语) (影印版).
外部連結 [ 编辑 ]