在數學上准周期函数是指一個函數有類似週期函數的性質,但不滿足嚴格的周期函数。更準確的說法,一函數為
為 准周期函数,且有准周期
若
其中
是一個比
簡單的函數,注意此處的「簡單」是一個模糊的概念。
一個簡單的例子(有些稱為算術準週期)為其函數滿足下式;

另一個的例子(有些稱為幾何準週期)為其函數滿足下式;

一個常見的例子為以下函數:

若比值A/B為有理數,此函數有真正的週期,但若A/B是無理數,此函數沒有週期,但有漸漸越來越準確的「概周期」。
以下是Θ函數

針對固定的τ,其准周期即為τ,此函數也有另一個週期1。另一個例子是魏尔施特拉斯Σ函數,有二個獨立的准周期,也就是對應魏爾斯特拉斯橢圓函數的週期。
符合以下泛函方程式的函數

也是準週期函數,例如針對定值η的魏尔施特拉斯Ζ函數

其中ω為對應魏爾斯特拉斯橢圓函數的週期。
若
,則f稱為週期函數,其週期為ω。.
準週期信號[编辑]
在音響處理中,準週期信號不是指准周期函数,而是那些有概周期函數特性的信號,因此無法用數學上的準週期性性質來處理這類的信號。
相關條目[编辑]
外部連結[编辑]