# 加加加速度

${\displaystyle {\vec {s}}={\frac {d{\vec {j}}}{dt}}={\frac {d^{2}{\vec {a}}}{dt^{2}}}={\frac {d^{3}{\vec {v}}}{dt^{3}}}={\frac {d^{4}{\vec {r}}}{dt^{4}}}}$

${\displaystyle {\vec {j}}}$ 是加加速度,
${\displaystyle {\vec {a}}}$ 是加速度,
${\displaystyle {\vec {v}}}$ 是速度,
${\displaystyle {\vec {r}}}$ 是位移,
${\displaystyle {\mathit {t}}}$ 是时间。

## 匀加加加速运动公式

• ${\displaystyle j=j.+st}$
• ${\displaystyle a=a.+j.t+{\frac {1}{2}}st^{2}}$
• ${\displaystyle v=u+a.t+{\frac {1}{2}}j.t^{2}+{\frac {1}{6}}st^{3}}$
• ${\displaystyle S=ut+{\frac {1}{2}}a.t^{2}+{\frac {1}{6}}j.t^{3}+{\frac {1}{24}}st^{4}}$

${\displaystyle {\vec {s}}}$ 是恒定的加加加速度,
${\displaystyle {\vec {j}}.}$ 是初加加速度，
${\displaystyle {\vec {j}}}$ 是末加加速度，
${\displaystyle {\vec {a}}.}$ 是初加速度，
${\displaystyle {\vec {a}}}$ 是末加速度，
${\displaystyle {\vec {v}}}$ 是初速度，
${\displaystyle {\vec {u}}}$ 是末速度，
${\displaystyle {\vec {S}}}$ 是距离或位移，
${\displaystyle {\vec {r}}}$ 是位置，
${\displaystyle {\mathit {t}}}$ 是时间。

## 参考资料

1. Visser, Matt. Jerk, Snap, and the Cosmological Equation of State. Classical and Quantum Gravity. 2004-07-24, 21 (11): 2603–2616. Bibcode:2004CQGra..21.2603V. arXiv:gr-qc/0309109. doi:10.1088/0264-9381/21/11/006.
2. ^ Gragert, Stephanie. What is the term used for the third derivative of position?. Usenet Physics and Relativity FAQ. Math Dept., University of California, Riverside. November 1998 [2008-03-12].