本页使用了标题或全文手工转换

化学计量数

维基百科,自由的百科全书
(重定向自化学计量比
跳转至: 导航搜索
Confusion grey.svg
提示:本条目的主题不是化学计量学
Combustion reaction of methane.jpg

化学计量数化学计量化学反应方程式中各反应物或生成物前的数值。例如,图中为甲烷在空气中完全燃烧的方程式,方程式中O2、H2O前的数值(或“系数”)2就是它的化学计量。当一个物质前的数值为1时,便省略不写,如式中的CH4和CO2

将一个未加化学计量数的方程补充化学计量数,使其符合物质、电荷守恒的过程叫做化学反应方程式的配平

化学计量比[编辑]

化学反应方程式中,各反应物的化学计量之比称为化学计量比。如果一个化学反应按照化学计量比发生,我们有如下假设:[1]

  1. 所有反应物都完全反应
  2. 反应物不缺少
  3. 反应物不过量

一些反应可以按照化学计量比进行反应,如溶液中的离子反应,有一些则需要其中的一种或多种反应物过量,如物质的燃烧。例如,对于反应:

2 Ag+ + S2− → Ag2S↓(沉淀反应)
H+ + OH → H2O(中和反应)

无论哪一个反应物过量,都可以按照化学计量比进行;而对于

C + O2 → CO2
2 C + O2 → 2 CO

在氧气过量的情况下,燃烧生成二氧化碳,而氧气不足的时候,则有一氧化碳生成。[2]

对于一些反应,可以人为的控制化学计量比,来获得不同化合物,尤其是一些二元化合物。如红化合,根据不同的化学计量比,可以产生Co2P、CoP和CoP3[3]

2 Co + P → Co2P
Co + P → CoP
Co + 3 P → CoP3

化学反应中化学计量的特殊情况[编辑]

燃料的燃烧[编辑]

燃料在燃烧时,为确保反应完全,需要氧化剂过量。若空气作为氧化剂,则使燃料完全燃烧所需的空气与燃料之比成为空燃比。常见燃料的空燃比如下:

燃料 质量比[4] 体积比[5] 质量比百分数
汽油 14.7 : 1 6.8%
天然气 17.2 : 1 9.7  : 1 5.8%
丙烷 15.67 : 1 23.9 : 1 6.45%
乙醇 9 : 1 11.1%
甲醇 6.47 : 1 15.6%
正丁醇 11.2 : 1 8.2%
氢气 34.3 : 1 2.39 : 1 2.9%
柴油 14.5 : 1 6.8%
甲烷 17.19 : 1 9.52 : 1 5.5%

和物质的量无关的反应[编辑]

有一些反应进行的方式和物质的量无关,而和反应物的浓度有关,改变反应物的浓度,生成物的种类也随之改变,如硝酸氧化还原反应

Cu + 4 HNO3(浓) → Cu(NO3)2 + 2 NO2↑ + 2 H2O
3 Cu + 8 HNO3(稀) → 3 Cu(NO3)2 + 2 NO↑ + 4 H2O

在10mol·L-1以上的硝酸中,按上式反应;而在4.8mol·L-1时,按下式反应。此时,无论硝酸或者铜是否过量,反应都按照硝酸的浓度进行,而和其物质的量无关。[6]类似地,对于硝酸铁溶液和的反应,反应如何进行与硝酸铁溶液的浓度有关,低浓度时,硝酸铁水解产生的H3O+与NO3-和Ag反应;而高浓度的硝酸铁则存在Fe3+氧化Ag和NO3-(H+)氧化Ag的竞争反应,通过理论计算,Fe3+在3.16mol·L-1以上便可氧化Ag。[7]

用途[编辑]

对于一个已配平的化学反应方程式,已知其中一个参与反应的物质的量(或其它已知量,如质量等),或者其中一个生成物的物质的量,便可求出反应方程式中其它物质的量,这广泛用于分析化学中的滴定重量分析的计算中。[8]物理化学中,如化学反应速率方程的求解与计算中,也能用到化学计量。[9]

而在物质的制备与合成中,往往需要将反应方程式中的化学计量比作为加料多少的参考;对于密闭空间有气体产生的化学反应,也需要根据生成气体的量来判断反应是否安全。

参考文献[编辑]

  1. ^ What’s in a Name? Amount of Substance, Chemical Amount, and Stoichiometric Amount Carmen J. Giunta Journal of Chemical Education 2016 93 (4), 583-586 doi:10.1021/acs.jchemed.5b00690
  2. ^ 武汉大学, 吉林大学 等. 无机化学(第三版)下册. 高等教育出版社, 2011. pp 740. ISBN 978-7-04-004880
  3. ^ 项斯芬, 严宣申, 曹庭礼 等. 无机化学丛书 第四卷 氮 磷 砷分族. 科学出版社, 2011: pp 162. ISBN 978-7-03-030548-0
  4. ^ John B. Heywood: "Internal Combustion Engine Fundamentals page 915", 1988
  5. ^ North American Mfg. Co.: "North American Combustion Handbook", 1952
  6. ^ 罗宿星, 伍远辉, 孙东来. 铜与硝酸反应实验中硝酸浓稀界限的研究. 实验室科学, 2012. 15(5): 67-69
  7. ^ 朱正德. 硝酸铁溶液溶解银镜的理论分析与实验探索. 化学教学, 2011(5): 78-79
  8. ^ 李璧玉. 浅议分析化学中的“化学计量数比”. 云南师范大学学报(自然科学版), 2005. 25(1): 28-30
  9. ^ 潘一兵,张良军. 速率方程与反应级数、化学计量数. 辽宁师专学报:自然科学版, 2001. 3(2): 17-18