十二边形

维基百科,自由的百科全书
跳转至: 导航搜索
正十二邊形
Regular polygon 12 annotated.svg
一個正十二邊形
類型 正多邊形
12
頂點 12
對角線 54
施萊夫利符號 {12}
t{6}
考克斯特圖 CDW ring.svgCDW 12.svgCDW dot.svg
對稱群 二面體群 (D12), order 2×12
面積 12
4.
a2cotπ.
12

11.196152422707a2
內角 150°
內角和 1800°
對偶 正十二邊形 (本身)
特性 圓內接多邊形等邊多邊形等角多邊形isotoxal

幾何學中,十二邊形是指有十二條邊和十二個頂點多邊形[1],其內角和為1800度[2]。十二邊形有很多種,其中對稱性最高的是正十二邊形。其他的十二邊形依照其類角的性質可以分成凸十二邊形和非凸十二邊形,其中凸十二邊形代表所有內角角度皆小於180度。非凸十二邊形可以在近一步分成凹十二邊形和星形十二邊形,其中星形十二邊形表示邊自我相交的十二邊形。而一般的十字形為凹十二邊形常見的一個例子。

正十二邊形[编辑]

正十二邊形是指所有邊等長、所有角等角的十二邊形,由十二條相同長度的邊和十二個相同大小的角構成,是一種正多邊形。正十二邊形的內角是 5π/6 弧度,換算成角度是150。在施萊夫利符號中用 {12} 來表示。由於正十二邊形可看作是截去所有頂點的正六邊形,即截角的正六邊形,因此施萊夫利符號中也可以計為 t{6}。而因為正六邊形亦可以將正三角形透過截角變換來構造,即切去正三角形的三個頂點,因此正十二邊形可以視為正三角形經過2次的截角變換的結果,在施萊夫利符號中亦可以寫為 tt{3}。

面積[编辑]

若已知正十二邊形的邊長a,則正十二邊形的面積為:

若已知內切圓半徑或邊心距為r,則其面積為:

若已知外接圓半徑為R,其面積為:[3]

三国时代数学家刘徽计算出半径为圆形,其内接正12边形的面积为[4][5]。正十二边形面积等于最长对角线平方的四分之三。

的十二邊形的寬度是兩個平行邊之間的距離,正好會等於兩倍的邊心距。因此已知證實二邊形的寬度和邊長也可以球出面積:

也可以利用三角關係進行驗證:

周長[编辑]

若已知邊心距,正十二邊形的周長[6]

若已知外接圓半徑,正十二邊形的周長為:

該系數是已知邊心距求面積公式中系數的兩倍[7]

尺規作圖[编辑]

尺規作圖可先在圓形內製作正六邊形,再將各邊二等分線延伸至圓周以完成正十二邊形的頂點

以尺規作圖作出正12邊形。

Regular Dodecagon Inscribed in a Circle.gif

分割[编辑]

正十二邊形的分割
Hexagonal cupola flat.png
正六邊形、正方形和正三角形
Wooden pattern blocks dodecagon.JPG
pattern block英语pattern blocks
Rhomb dissected dodecagon.png
六維超立方體英语6-cube投影圖中的15個菱形
Rhomb dissected dodecagon3.png
15個菱形

[8]

密鋪平面[编辑]

有一些正多邊形鑲嵌圖含有正十二邊形

Tile 3bb.svg
截角六邊形鑲嵌3.12.12[9][10]
Tile 46b.svg
大斜方截半六邊形鑲嵌: 4.6.12
Dem3343tbc.png
六角化大斜方截半六邊形鑲嵌:
3.3.4.12 & 3.3.3.3.3.3

對稱性[编辑]

一般的十二邊形對稱性以對邊和頂點的顏色顯示。約翰·何頓·康威以字母來標記這些形狀的對稱性。[11]

正十二邊形具有Dih12對稱性,階數為24.

有15個不同的子群二面體群和環狀對稱。每個子組對稱性允許一個或多個自由不規則形式。只有G12子群沒有自由度,但可以看作是有向邊

不同對稱性的十二邊形
Full symmetry dodecagon.png
r24
Hexagonal star dodecagon.png
d12
Gyrated dodecagon.png
g12
Truncated hexagon dodecagon.png
p12
Cross dodecagon.png
i8
Hexagonal star d6 dodecagon.png
d6
Twisted hexagonal star dodecagon.png
g6
Truncated triangular star dodecagon.png
p6
D4 star dodecagon.png
d4
Twisted cross dodecagon.png
g4
H-shape-dodecagon.png
p4
Twisted triangle star dodecagon.png
g3
D2 star dodecagon.png
d2
Distorted twisted cross dodecagon.png
g2
Distorted H-shape-dodecagon.png
p2
No symmetry dodecagon.png
a1

扭歪十二邊形[编辑]

一個正扭歪十二邊形,位於六角反柱上

扭歪十二邊形,又稱不共面十二邊形,是指頂點並非完全共面的十二邊形。

皮特里多邊形[编辑]

扭歪十二邊形經常出現在高維多胞體正交投影皮特里多邊形英语Petrie_polygon。例如十一維正十二胞體的皮特里多邊形就是一個扭歪十二邊形,其具有A11 [3,3,3,3,3,3,3,3,3,3] 的考克斯特群的對稱性[12]

高維度的扭歪十二邊形
E6英语E6 (mathematics) F4英语F4 (mathematics) 2G2 (4D)
E6 graph.svg
221英语2 21 polytope
Gosset 1 22 polytope.png
122英语1 22 polytope
24-cell t0 F4.svg
正二十四胞體
24-cell h01 F4.svg
扭棱二十四胞體英语Snub 24-cell
6-6 duopyramid ortho-3.png
六角六角錐體錐英语6-6 duopyramid
6-6 duoprism ortho-3.png
六角六角柱體柱英语6-6 duoprism
A11 D7 B6
11-simplex t0.svg
十一維正十二胞體
7-cube t6 B6.svg
(411)英语7-orthoplex
7-demicube t0 D7.svg
141英语7-demicube
6-cube t5.svg
六維正軸體英语6-orthoplex
6-cube t0.svg
六維超立方體英语6-cube

使用[编辑]

  • 澳大利亞元的50分硬币形狀為正12邊形。
  • 澳門幣五圓和二毫的形状为正12邊形
  • 二毫二元港币的形状为正12邊形(严格地说,是每边向内凹陷的正十二边形)
  • 嵩岳寺塔的底為正12邊形。

參見[编辑]

參考文獻[编辑]

  1. ^ MathWorldDodecagon的资料,作者:埃里克·韦斯坦因
  2. ^ Polygons – Dodecagon. coolmath.com. 
  3. ^ 柯謝克英语József Kürschák的幾何證明 Kürschák's Dodecagon. the Wolfram Demonstration Project. 
  4. ^ 九章算術》卷第一 - 大哉言數
  5. ^ Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 56-57 and 137, 1991. ISBN 978-0140118131
  6. ^ Plane Geometry: Experiment, Classification, Discovery, Application by Clarence Addison Willis B., (1922) Blakiston's Son & Company, p. 249 [1]
  7. ^ Elements of geometry by John Playfair, William Wallace, John Davidsons, (1814) Bell & Bradfute, p. 243 [2]
  8. ^ "Doin' Da' Dodeca'" on mathforum.org
  9. ^ Chavey, D. Tilings by Regular Polygons—II: A Catalog of Tilings. Computers & Mathematics with Applications. 1989, 17: 147–165. doi:10.1016/0898-1221(89)90156-9. 
  10. ^ Uniform Tilings. 
  11. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  12. ^ Davis, Michael W., The Geometry and Topology of Coxeter Groups (PDF), 2007, ISBN 978-0-691-13138-2, Zbl 1142.20020 

外部連結[编辑]