十角星

10

5/3

verse-and-dimensions的wikiaBowers acronym
deg

與五角星及五邊形相關性

t{5} = {10}

t{5/4} = {10/4} = 2{5/2}

t{5/3} = {10/3}

t{5/2} = {10/2} = 2{5}

參考文獻

1. ^ Barnes, John, Gems of Geometry, Springer: 28–29, 2012 [2015-08-16], ISBN 9783642309649, （原始内容存档于2019-06-08）.
2. ^ Regular polytopes, p 93-95, regular star polygons, regular star compounds
3. ^ Coxeter, Introduction to Geometry, second edition, 2.8 Star polygons p.36-38
4. ^ The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, .
5. ^ *Coxeter, Harold Scott MacDonald; Longuet-Higgins, M. S.; Miller, J. C. P. Uniform polyhedra. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences (The Royal Society). 1954, 246 (916): 411. ISSN 0080-4614. JSTOR 91532. MR 0062446. doi:10.1098/rsta.1954.0003.
6. ^ Coxeter, The Densities of the Regular polytopes I, p.43 If d is odd, the truncation of the polygon {p/q} is naturally {2n/d}. But if not, it consists of two coincident {n/(d/2)}'s; two, because each side arises from an original side and once from an original vertex. Thus the density of a polygon is unaltered by truncation.
7. ^ Sarhangi, Reza, Polyhedral Modularity in a Special Class of Decagram Based Interlocking Star Polygons, Bridges 2012: Mathematics, Music, Art, Architecture, Culture (PDF): 165–174, 2012 [2015-08-16], （原始内容 (PDF)存档于2015-02-05）.