半正多面體

维基百科,自由的百科全书
跳转至: 导航搜索
Confusion grey.svg
提示:本条目的主题不是阿基米德立體
半正多面體:
阿基米德立體, 稜柱, and 反稜柱
Truncated tetrahedron.png Cuboctahedron.png Truncated hexahedron.png Truncated octahedron.png
Small rhombicuboctahedron.png Great rhombicuboctahedron.png Snub hexahedron.png Icosidodecahedron.png
Truncated dodecahedron.png Truncated icosahedron.png Small rhombicosidodecahedron.png Great rhombicosidodecahedron.png
Snub dodecahedron ccw.png Triangular prism.png Pentagonal prism.png Hexagonal prism.png
Prism 7.png Square antiprism.png Pentagonal antiprism.png Hexagonal antiprism.png

半正多面體是泛指所有由2種以上正多邊形所組成的多面體,並且要有對稱群,根據托羅爾德戈塞特的1900定義半正多面體[1][2]有下面幾種:

半正多面體並非只包含阿基米德立體[3][4],它包含了所有由正多邊形組成且具有嚴格對稱的多面體,包含了正稜柱正反稜柱

這些半正多面體可以完全由一種頂點配置來描述。例如:3.5.3.5,表示截半二十面體,即每個頂點周圍都有2個三角形和2個五邊形。而若頂點配置有些微差異就會變成另外一種半正多面體,像是3.3.3.5是一個五角反稜柱。這些多面體有時被描述為vertex-transitive。

從Gosset開始有其他作者使用術語“半正”,以不同的方式,描述更高維度的立體。E. L. Elte[5]提供了一種被考克斯特認為過於太人為的定義。考克斯特自己冠以戈塞特的數據正圖形,但只有相當有限的子集分類為半正圖形[6]

然而,其他人採取了不同的方式,來分類半正多面體。這些內容包括:

  • 三組符合戈塞特定義的星形多面體,類似於上面列出的凸多面體。
  • 上述多面體的對偶多面體,由於他們具有相同的對稱性。這些多面體有:

進一步引起爭議的根源在於,阿基米德多面體的定義再次出現不同的解釋方式。

Gosset定義的半正多面體有更高的對稱性,正多面體擬正多面體英语Quasiregular polyhedron,後來的一些學者認為,這些都不是半正多面體,因為他們過於「正」了,並認為均勻多面體比較適合,這個命名系統的比較好,並協調許多(但絕不是全部)爭議。

參考文獻[编辑]

  1. ^ Thorold Gosset On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  2. ^ Coxeter, H.S.M. Regular polytopes, 3rd Edn, Dover (1973)
  3. ^ 《圖解數學辭典》天下遠見出版ISBN 986-417-614-5
  4. ^ Illustrated Dictionary of Maths 2003 Usborne Publishing Ltd.
  5. ^ Elte, E. L., The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen. 1912 
  6. ^ Coxeter, H.S.M., Longuet-Higgins, M.S. and Miller, J.C.P. Uniform Polyhedra, Philosophical Transactions of the Royal Society of London 246 A (1954), pp. 401-450. (JSTOR archive, subscription required).