卡方检验

维基百科,自由的百科全书
跳转至: 导航搜索
此图展示分别在1、2、3、4、5的自由度下,卡方统计量(X轴)与P值(P-value,Y轴)之间的变化关系。

卡方检验Chi-Squared Test Test)是一种统计量的分布在零假设成立时近似服从卡方分布)的假设检验。在没有其他的限定条件或说明时,卡方检验一般指代的是皮尔森卡方检验。在卡方检验的一般运用中,研究人员将观察量的值划分成若干互斥的分类,并且使用一套理论(或零假设)尝试去说明观察量的值落入不同分类的概率分布的模型。而卡方检验的目的就在于去衡量这个假设对观察结果所反映的程度。

有多種不同的卡方檢定,運用在不同場合。例如:

历史[编辑]

在十九世纪,统计分析方法主要被用于生物数据分析。当时主流意见认为正态分布普遍适用于此类数据,例如乔治·比德尔·艾里爵士以及梅里曼教授英语Mansfield Merriman,而皮尔森在他1900年的论文中就针对了他们的研究数据作出了指正。[1]

直到十九世纪末期,皮尔森指出了部分数据具有明显的偏态,正态分布并不是普遍适用。为了更好地对这些观察数据进行建模,皮尔森在1983年至1916年发表的系列文章[2][3][4][5]中提出了一个包含正态分布以及众多偏态分布的连续概率分布族——皮尔森分布族英语Pearson Distribution。同时,他指出数据统计分析的步骤应该是在从皮尔森分布族中选取合适的分布来进行建模后,使用拟合优度检验技术来检验模型和实验数据间的拟合优度。

在1900年,皮尔森发表了著名的关于检验的文章[1],该文章被认为是现代统计学的基石之一。[6]

运用[编辑]

  • 建立零假说(Null Hypothesis),即认为观测值与理论值的差异是由于随机误差所致;
  • 确定数据间的实际差异,即求出卡方值;
  • 如卡方值大于某特定概率标准(即显著性差异)下的理论值,则拒绝零假说,即实测值与理论值的差异在该显著性水平下是显著的。

相关条目[编辑]

外部链接[编辑]

[编辑]

  1. ^ 1.0 1.1 Pearson, Karl. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling (PDF). Philosophical Magazine Series 5. 1900, 50: 157–175. doi:10.1080/14786440009463897. 
  2. ^ Pearson, Karl. Contributions to the mathematical theory of evolution [abstract]. Proceedings of the Royal Society. 1893, 54: 329–333. JSTOR 115538. doi:10.1098/rspl.1893.0079. 
  3. ^ Pearson, Karl. Contributions to the mathematical theory of evolution, II: Skew variation in homogeneous material. Philosophical Transactions of the Royal Society. 1895, 186: 343–414. Bibcode:1895RSPTA.186..343P. JSTOR 90649. doi:10.1098/rsta.1895.0010. 
  4. ^ Pearson, Karl. Mathematical contributions to the theory of evolution, X: Supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society A. 1901, 197: 443–459. Bibcode:1901RSPTA.197..443P. JSTOR 90841. doi:10.1098/rsta.1901.0023. 
  5. ^ Pearson, Karl. Mathematical contributions to the theory of evolution, XIX: Second supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society A. 1916, 216: 429–457. Bibcode:1916RSPTA.216..429P. JSTOR 91092. doi:10.1098/rsta.1916.0009. 
  6. ^ Cochran, William G. The Chi-square Test of Goodness of Fit. The Annals of Mathematical Statistics. 1952, 23: 315–345. JSTOR 2236678.