双倒数图

维基百科,自由的百科全书
跳转至: 导航搜索
Lineweaver-Burke plot.svg

双倒数图也稱為莱恩威弗-伯克作图,是生物化學用来描述酶动力学的莱恩威弗-伯克方程的圖示法,由漢斯·萊恩威弗英语Hans Lineweaver迪恩·伯克英语Dean Burk于1934年提出[1]

推導[编辑]

双倒数图被用来图像分析米氏方程

取倒數得到

其中

V反應速率
Km為米氏常數。
Vmax為最大反應速率。
[S]為底物濃度

应用[编辑]

在强大的计算机和非线性回归英语Nonlinear regression软件出现前双倒数图被广泛用来确定酶动力学里的项,比如KmVmax。双倒数图的截距等于Vmax的逆数。双倒数图的等于−1/Km。双倒数图还能很快地体现不同形式的酶抑制

双倒数图扭曲数据结构,因此它不能可靠地确定酶动力学系数。虽然今天它依然被用来显示动力学数据[2],一般米氏动力学的非线性回归图象或者其它线性图象如哈尼斯-伍尔夫图英语Hanes–Woolf plot伊迪-霍夫斯蒂图英语Eadie–Hofstee diagram被用来计算系数[3]

双倒数图可以用来区别竞争性抑制非竞争性抑制英语Non-competitive inhibition不竞争性抑制英语Uncompetitive inhibitor。竞争性抑制剂和不竞争性抑制剂的y截距相同,但是倾斜度不同,x也不同。非竞争性抑制剂和不竞争性抑制剂的x截距相同,但是倾斜度不同,因此y不同。竞争性抑制剂和不竞争性抑制剂的yx都不同。

缺点[编辑]

在較舊的書籍裡双倒数图经常被使用,但是它很容易出错误。它的y轴是反应速度的倒数,因此小的测量错误会被放大。此外大多数图在y轴的右边很远的地方,因此要通过很大的外推来获得xy的截距[4]

参考资料[编辑]

  1. ^ Lineweaver, H and Burk, D. The Determination of Enzyme Dissociation Constants. Journal of the American Chemical Society. 1934, 56 (3): 658–666. doi:10.1021/ja01318a036. 
  2. ^ Hayakawa, K.; Guo, L.; Terentyeva, E.A.; Li, X.K.; Kimura, H.; Hirano, M.; Yoshikawa, K.; Nagamine, T.; 等. Determination of specific activities and kinetic constants of biotinidase and lipoamidase in LEW rat and Lactobacillus casei (Shirota). J Chromatogr B Analyt Technol Biomed Life Sci. 2006, 844 (2): 240–50. PMID 16876490. doi:10.1016/j.jchromb.2006.07.006. 
  3. ^ Greco, W. R. and Hakala, M. T.,. Evaluation of methods for estimating the dissociation constant of tight binding enzyme inhibitors, (PDF). J. Biol. Chem. 1979, 254 (23): 12104–12109. PMID 500698. 
  4. ^ Dowd, John E.; Riggs, Douglas S. A Comparison of Estimates of Michaelis–Menten Kinetic Constants from Various Linear Transformations. J. Biol. Chem. 1965, 240 (2): 863–869. 

外部链接[编辑]

  • NIH guide, enzyme assay development and analysis