# 反函数及其微分

${\displaystyle {\color {CornflowerBlue}{f'}}(x)={\frac {1}{{\color {Salmon}{(f^{-1})'}}({\color {Blue}{f}}(x))}}}$

${\displaystyle {\color {CornflowerBlue}{f'}}(x_{0})={\frac {1}{4}}}$
${\displaystyle {\color {Salmon}{(f^{-1})'}}({\color {Blue}{f}}(x_{0}))=4~}$

${\displaystyle {\frac {dx}{dy}}\,\cdot \,{\frac {dy}{dx}}=1.}$${\displaystyle {\frac {dx}{dy}}\,\cdot \,{\frac {dy}{dx}}=1.}$

${\displaystyle {\frac {dx}{dy}}\,\cdot \,{\frac {dy}{dx}}={\frac {dx}{dx}}}$

${\displaystyle x}$相对于 ${\displaystyle x}$ 的导数为1。

${\displaystyle \left[f^{-1}\right]'(a)={\frac {1}{f'\left(f^{-1}(a)\right)}}}$

${\displaystyle {\mathcal {D}}\left[f^{-1}\right]={\frac {1}{({\mathcal {D}}f)\circ \left(f^{-1}\right)}},}$

## 反函数举例

• ${\displaystyle \,y=x^{2}}$ ( ${\displaystyle x}$为正)具有逆 ${\displaystyle x={\sqrt {y}}}$中。
${\displaystyle {\frac {dy}{dx}}=2x{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {dx}{dy}}={\frac {1}{2{\sqrt {y}}}}={\frac {1}{2x}}}$${\displaystyle {\frac {dy}{dx}}\,\cdot \,{\frac {dx}{dy}}=2x\cdot {\frac {1}{2x}}=1.}$
${\displaystyle {\frac {dy}{dx}}\,\cdot \,{\frac {dx}{dy}}=2x\cdot {\frac {1}{2x}}=1.}$

• ${\displaystyle \,y=e^{x}}$ ( ${\displaystyle x}$为实数)具有逆 ${\displaystyle \,x=\ln {y}}$ ( ${\displaystyle y}$为正值)
${\displaystyle {\frac {dy}{dx}}=e^{x}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {dx}{dy}}={\frac {1}{y}}}$
${\displaystyle {\frac {dy}{dx}}\,\cdot \,{\frac {dx}{dy}}=e^{x}\cdot {\frac {1}{y}}={\frac {e^{x}}{e^{x}}}=1}$

## 其他属性

• 对反函数积分
${\displaystyle {f^{-1}}(x)=\int {\frac {1}{f'({f^{-1}}(x))}}\,{dx}+\mathrm {C} }$

## 高阶导数

${\displaystyle {\frac {d^{2}y}{dx^{2}}}\,\cdot \,{\frac {dx}{dy}}+{\frac {d}{dx}}\left({\frac {dx}{dy}}\right)\,\cdot \,\left({\frac {dy}{dx}}\right)=0,}$

${\displaystyle {\frac {d^{2}y}{dx^{2}}}\,\cdot \,{\frac {dx}{dy}}+{\frac {d^{2}x}{dy^{2}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{2}=0.}$${\displaystyle {\frac {d^{2}y}{dx^{2}}}\,\cdot \,{\frac {dx}{dy}}+{\frac {d^{2}x}{dy^{2}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{2}=0}$

${\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {d^{2}x}{dy^{2}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{3}}$${\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {d^{2}x}{dy^{2}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{3}.}$

${\displaystyle {\frac {d^{3}y}{dx^{3}}}=-{\frac {d^{3}x}{dy^{3}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{4}-3{\frac {d^{2}x}{dy^{2}}}\,\cdot \,{\frac {d^{2}y}{dx^{2}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{2}}$

${\displaystyle {\frac {d^{3}y}{dx^{3}}}=-{\frac {d^{3}x}{dy^{3}}}\,\cdot \,\left({\frac {dy}{dx}}\right)^{4}+3\left({\frac {d^{2}x}{dy^{2}}}\right)^{2}\,\cdot \,\left({\frac {dy}{dx}}\right)^{5}}$

${\displaystyle g''(x)={\frac {-f''(g(x))}{[f'(g(x))]^{2}}}}$

## 反函数的微分举例

• ${\displaystyle \,y=e^{x}}$ 有逆运算${\displaystyle \,x=\ln y}$。 使用反函数的二次导数公式，
${\displaystyle {\frac {dy}{dx}}={\frac {d^{2}y}{dx^{2}}}=e^{x}=y{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}\left({\frac {dy}{dx}}\right)^{3}=y^{3};}$

${\displaystyle {\frac {d^{2}x}{dy^{2}}}\,\cdot \,y^{3}+y=0{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {d^{2}x}{dy^{2}}}=-{\frac {1}{y^{2}}}}$,