# 均差

## 定義

${\displaystyle (x_{0},y_{0}),\ldots ,(x_{n},y_{n})}$

{\displaystyle {\begin{aligned}{\mathopen {[}}y_{\nu }]&=y_{\nu },\quad \nu \in \{0,\ldots ,n\}\\{\mathopen {[}}y_{\nu },\ldots ,y_{\nu +j}]&={\frac {[y_{\nu +1},\ldots ,y_{\nu +j}]-[y_{\nu },\ldots ,y_{\nu +j-1}]}{x_{\nu +j}-x_{\nu }}},\quad \nu \in \{0,\ldots ,n-j\},\ j\in \{1,\ldots ,n\}.\\\end{aligned}}}

{\displaystyle {\begin{aligned}{\mathopen {[}}y_{\nu }]&=y_{\nu },\quad \nu \in \{0,\ldots ,n\}\\{\mathopen {[}}y_{\nu },\ldots ,y_{\nu -j}]&={\frac {[y_{\nu },\ldots ,y_{\nu -j+1}]-[y_{\nu -1},\ldots ,y_{\nu -j}]}{x_{\nu }-x_{\nu -j}}},\quad \nu \in \{j,\ldots ,n\},\ j\in \{1,\ldots ,n\}.\\\end{aligned}}}

## 表示法

${\displaystyle (x_{0},f(x_{0})),\ldots ,(x_{n},f(x_{n}))}$

{\displaystyle {\begin{aligned}f[x_{\nu }]&=f(x_{\nu }),\qquad \nu \in \{0,\ldots ,n\}\\f[x_{\nu },\ldots ,x_{\nu +j}]&={\frac {f[x_{\nu +1},\ldots ,x_{\nu +j}]-f[x_{\nu },\ldots ,x_{\nu +j-1}]}{x_{\nu +j}-x_{\nu }}},\quad \nu \in \{0,\ldots ,n-j\},\ j\in \{1,\ldots ,n\}.\end{aligned}}}

${\displaystyle {\begin{matrix}{\mathopen {[}}x_{0},\ldots ,x_{n}]f\\{\mathopen {[}}x_{0},\ldots ,x_{n};f]\\{\mathopen {D}}[x_{0},\ldots ,x_{n}]f\\\end{matrix}}}$

## 例子

{\displaystyle {\begin{aligned}{\mathopen {[}}y_{0}]&=y_{0}\\{\mathopen {[}}y_{0},y_{1}]&={\frac {y_{1}-y_{0}}{x_{1}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},y_{2}]&={\frac {{\mathopen {[}}y_{1},y_{2}]-{\mathopen {[}}y_{0},y_{1}]}{x_{2}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},y_{2},y_{3}]&={\frac {{\mathopen {[}}y_{1},y_{2},y_{3}]-{\mathopen {[}}y_{0},y_{1},y_{2}]}{x_{3}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},\dots ,y_{n}]&={\frac {{\mathopen {[}}y_{1},y_{2},\dots ,y_{n}]-{\mathopen {[}}y_{0},y_{1},\dots ,y_{n-1}]}{x_{n}-x_{0}}}\end{aligned}}}

${\displaystyle {\begin{matrix}x_{0}&[y_{0}]=y_{0}&&&\\&&[y_{0},y_{1}]&&\\x_{1}&[y_{1}]=y_{1}&&[y_{0},y_{1},y_{2}]&\\&&[y_{1},y_{2}]&&[y_{0},y_{1},y_{2},y_{3}]\\x_{2}&[y_{2}]=y_{2}&&[y_{1},y_{2},y_{3}]&\\&&[y_{2},y_{3}]&&\\x_{3}&[y_{3}]=y_{3}&&&\\\end{matrix}}}$

## 性质

{\displaystyle {\begin{aligned}(f+g)[x_{0},\dots ,x_{n}]&=f[x_{0},\dots ,x_{n}]+g[x_{0},\dots ,x_{n}]\\(\lambda \cdot f)[x_{0},\dots ,x_{n}]&=\lambda \cdot f[x_{0},\dots ,x_{n}]\\\end{aligned}}}
${\displaystyle (f\cdot g)[x_{0},\dots ,x_{n}]=f[x_{0}]\cdot g[x_{0},\dots ,x_{n}]+f[x_{0},x_{1}]\cdot g[x_{1},\dots ,x_{n}]+\dots +f[x_{0},\dots ,x_{n}]\cdot g[x_{n}]}$
${\displaystyle \exists \xi \in (\min\{x_{0},\dots ,x_{n}\},\max\{x_{0},\dots ,x_{n}\})\quad f[x_{0},\dots ,x_{n}]={\frac {f^{(n)}(\xi )}{n!}}}$

## 展開形式

{\displaystyle {\begin{aligned}{\mathopen {[}}y_{0}]&=y_{0}\\{\mathopen {[}}y_{0},y_{1}]&={\frac {y_{0}}{x_{0}-x_{1}}}+{\frac {y_{1}}{x_{1}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},y_{2}]&={\frac {y_{0}}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {y_{1}}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {y_{2}}{(x_{2}-x_{0})(x_{2}-x_{1})}}\\{\mathopen {[}}y_{0},y_{1},\dots ,y_{n}]&=\sum _{j=0}^{n}{\frac {y_{j}}{\prod _{k=0,\,k\neq j}^{n}x_{j}-x_{k}}}\\\end{aligned}}}

## 等價定義

{\displaystyle {\begin{aligned}{\mathopen {[}}y_{0},y_{1},\dots ,y_{n-1},y_{n}]&={\frac {{\mathopen {[}}y_{1},y_{2},\dots ,y_{n}]-{\mathopen {[}}y_{0},y_{1},\dots ,y_{n-1}]}{x_{n}-x_{0}}}\\&={\frac {{\mathopen {[}}y_{0},\dots ,y_{n-2},y_{n}]-{\mathopen {[}}y_{0},y_{1},\dots ,y_{n-1}]}{x_{n}-x_{n-1}}}\\\end{aligned}}}

{\displaystyle {\begin{aligned}{\mathopen {[}}y_{0}]&=y_{0}\\{\mathopen {[}}y_{0},y_{1}]&={\frac {y_{1}-y_{0}}{x_{1}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},y_{2}]&={\frac {{\mathopen {[}}y_{0},y_{2}]-{\mathopen {[}}y_{0},y_{1}]}{x_{2}-x_{1}}}\\{\mathopen {[}}y_{0},y_{1},y_{2},y_{3}]&={\frac {{\mathopen {[}}y_{0},y_{1},y_{3}]-{\mathopen {[}}y_{0},y_{1},y_{2}]}{x_{3}-x_{2}}}\\{\mathopen {[}}y_{0},y_{1},\dots ,y_{n}]&={\frac {{\mathopen {[}}y_{0},\dots ,y_{n-2},y_{n}]-{\mathopen {[}}y_{0},y_{1},\dots ,y_{n-1}]}{x_{n}-x_{n-1}}}\\\end{aligned}}}

${\displaystyle {\begin{matrix}x_{0}&[y_{0}]=y_{0}&&&\\&&[y_{0},y_{1}]&&\\x_{1}&[y_{1}]=y_{1}&&[y_{0},y_{1},y_{2}]&\\&&[y_{0},y_{2}]&&[y_{0},y_{1},y_{2},y_{3}]\\x_{2}&[y_{2}]=y_{2}&&[y_{0},y_{1},y_{3}]&\\&&[y_{0},y_{3}]&&\\x_{3}&[y_{3}]=y_{3}&&&\\\end{matrix}}}$

## 牛頓插值法

{\displaystyle {\begin{aligned}N(x)&=y_{0}+(x-{x}_{0})\left([{y}_{0},{y}_{1}]+(x-{x}_{1})\left([{y}_{0},{y}_{1},{y}_{2}]+\cdots \right)\right)\\&=[y_{0}]+[{y}_{0},{y}_{1}](x-{x}_{0})+\cdots +[{y}_{0},{y}_{1},\ldots ,{y}_{n}]\prod _{k=0}^{n-1}x-{x}_{k}\end{aligned}}}

{\displaystyle {\begin{aligned}N(x)&=y_{0}+y_{0}{\frac {x-{x}_{0}}{x_{0}-x_{1}}}+y_{1}{\frac {x-{x}_{0}}{x_{1}-x_{0}}}+\cdots +\sum _{j=0}^{n}y_{j}{\frac {\prod _{k=0}^{n-1}x-{x}_{k}}{\prod _{k=0,\,k\neq j}^{n}x_{j}-x_{k}}}\\\end{aligned}}}

{\displaystyle {\begin{aligned}N(x)&=y_{0}\left(1+{\frac {x-{x}_{0}}{x_{0}-x_{1}}}+{\frac {(x-x_{0})(x-x_{1})}{(x_{0}-x_{1})(x_{0}-x_{2})}}\right)+y_{1}\left({\frac {x-{x}_{0}}{x_{1}-x_{0}}}+{\frac {(x-x_{0})(x-x_{1})}{(x_{1}-x_{0})(x_{1}-x_{2})}}\right)+y_{2}{\frac {(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})}}\\&=y_{0}{\frac {(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})}}+y_{1}{\frac {(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})}}+y_{2}{\frac {(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})}}\\&=\sum _{j=0}^{2}y_{j}\prod _{\begin{smallmatrix}k=0\\k\neq j\end{smallmatrix}}^{2}{\frac {x-{x}_{k}}{x_{j}-x_{k}}}\\\end{aligned}}}

## 前向差分

### 定義

${\displaystyle (x_{0},y_{0}),\ldots ,(x_{n},y_{n})}$

${\displaystyle x_{i}=x_{0}+ih,\quad h>0{\mbox{ , }}0\leq i\leq n.}$

{\displaystyle {\begin{aligned}\triangle ^{0}y_{i}&=y_{i}\\\triangle ^{k}y_{i}&=\triangle ^{k-1}y_{i+1}-\triangle ^{k-1}y_{i},\quad 1\leq k\leq n-i.\\\end{aligned}}}

### 例子

${\displaystyle {\begin{matrix}y_{0}&&&\\&\triangle y_{0}^{1}&&\\y_{1}&&\triangle ^{2}y_{0}&\\&\triangle y_{1}^{1}&&\triangle ^{3}y_{0}\\y_{2}&&\triangle ^{2}y_{1}&\\&\triangle y_{2}^{1}&&\\y_{3}&&&\\\end{matrix}}}$

### 展開形式

{\displaystyle {\begin{aligned}\triangle ^{k}y_{i}&=\sum _{j=0}^{k}(-1)^{k-j}{\binom {k}{j}}y_{i+j},\quad 0\leq k\leq n-i\end{aligned}}}

${\displaystyle {n \choose k}={\frac {(n)_{k}}{k!}}\quad \quad (n)_{k}=n(n-1)(n-2)\cdots (n-k+1)}$

### 插值公式

{\displaystyle {\begin{aligned}f(x)&=y_{0}+{\frac {x-x_{0}}{h}}\left(\Delta ^{1}y_{0}+{\frac {x-x_{0}-h}{2h}}\left(\Delta ^{2}y_{0}+\cdots \right)\right)\\&=y_{0}+\sum _{k=1}^{n}{\frac {\Delta ^{k}y_{0}}{k!h^{k}}}\prod _{i=0}^{n-1}(x-x_{0}-ih)\\&=y_{0}+\sum _{k=1}^{n}{\frac {\Delta ^{k}y_{0}}{k!}}\prod _{i=0}^{n-1}({\frac {x-x_{0}}{h}}-i)\\&=\sum _{k=0}^{n}{{\frac {x-x_{0}}{h}} \choose k}~\Delta ^{k}y_{0}\\\end{aligned}}}

### 無窮級數

{\displaystyle {\begin{aligned}f(x)&=f(a)+\lim _{h\to 0}\sum _{k=1}^{\infty }{\frac {\Delta _{h}^{k}[f](a)}{k!h^{k}}}\prod _{i=0}^{k-1}((x-a)-ih)\\&=f(a)+\sum _{k=1}^{\infty }{\frac {d^{k}}{dx^{k}}}f(a){\frac {(x-a)^{k}}{k!}}.\\\end{aligned}}}

## 冪函數的均差

{\displaystyle {\begin{aligned}p_{j}[x_{0},\dots ,x_{n}]&=0\qquad \forall j

## 泰勒形式

${\displaystyle f=f(0)p_{0}+f'(0)p_{1}+{\frac {f''(0)}{2!}}p_{2}+\dots }$

${\displaystyle f[x_{0},\dots ,x_{n}]=f(0)p_{0}[x_{0},\dots ,x_{n}]+f'(0)p_{1}[x_{0},\dots ,x_{n}]+\dots +{\frac {f^{(n)}(0)}{n!}}p_{n}[x_{0},\dots ,x_{n}]+\dots }$

${\displaystyle n}$項消失了，因為均差的階高於多項式的階。可以得出均差的泰勒級數本質上開始於：

${\displaystyle {\frac {f^{(n)}(0)}{n!}}}$

## 皮亞諾形式

${\displaystyle f[x_{0},\ldots ,x_{n}]={\frac {1}{n!}}\int _{x_{0}}^{x_{n}}f^{(n)}(t)B_{n-1}(t)\,dt}$

## 註釋與引用

1. ^
${\displaystyle {\begin{array}{lcl}{\begin{matrix}x_{0}&x_{0}^{2}&&\\&&x_{0}+x_{1}&&\\x_{1}&x_{1}^{2}&&1&\\&&x_{1}+x_{2}&&0\\x_{2}&x_{2}^{2}&&1&\\&&x_{2}+x_{3}&&&\\x_{3}&x_{3}^{2}&&&\\\end{matrix}}\\\\{\begin{matrix}x_{0}&x_{0}^{n}&\\&&\sum _{i=0}^{n-1}x_{0}^{n-1-i}x_{1}^{i}\\x_{1}&x_{1}^{n}&\\\end{matrix}}\\\\{\begin{matrix}x_{0}&x_{0}^{n+1}&\\&&{\frac {x_{1}^{n+1}-x_{1}x_{0}^{n}+x_{1}x_{0}^{n}-x_{0}^{n+1}}{x_{1}-x_{0}}}=x_{1}\sum _{i=0}^{n-1}x_{0}^{n-1-i}x_{1}^{i}+x_{0}^{n}=\sum _{i=0}^{n}x_{0}^{n-i}x_{1}^{i}\\x_{1}&x_{1}^{n+1}&\\\end{matrix}}\\\\{\begin{matrix}x_{0}&x_{0}^{3}&&&&\\&&x_{0}^{2}+x_{0}x_{1}+x_{1}^{2}&&\\x_{1}&x_{1}^{3}&&x_{0}+x_{1}+x_{2}&&\\&&x_{1}^{1}+x_{1}x_{2}+x_{2}^{2}&&1&\\x_{2}&x_{2}^{3}&&x_{1}+x_{2}+x_{3}&&0\\&&x_{2}^{2}+x_{2}x_{3}+x_{3}^{2}&&1&\\x_{3}&x_{3}^{3}&&x_{2}+x_{3}+x_{4}&&\\&&x_{3}^{2}+x_{3}x_{4}+x_{4}^{2}&&&\\x_{4}&x_{4}^{3}&&&&\\\end{matrix}}\\\\{\begin{matrix}x_{0}&x_{0}^{4}&&&&&\\&&x_{0}^{3}+x_{0}^{2}x_{1}+x_{0}x_{1}^{2}+x_{1}^{3}&&&\\x_{1}&x_{1}^{4}&&x_{0}^{2}+x_{0}x_{1}+x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}+x_{0}x_{2}&&&\\&&x_{1}^{3}+x_{1}^{2}x_{2}+x_{1}x_{2}^{2}+x_{2}^{3}&&x_{0}+x_{1}+x_{2}+x_{3}&\\x_{2}&x_{2}^{4}&&x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}+x_{2}x_{3}+x_{3}^{2}+x_{1}x_{3}&&1&\\&&x_{2}^{3}+x_{2}^{2}x_{3}+x_{2}x_{3}^{2}+x_{3}^{3}&&x_{1}+x_{2}+x_{3}+x_{4}&&0\\x_{3}&x_{3}^{4}&&x_{2}^{2}+x_{2}x_{3}+x_{3}^{2}+x_{3}x_{4}+x_{4}^{2}+x_{2}x_{4}&&1&\\&&x_{3}^{3}+x_{3}^{2}x_{4}+x_{3}x_{4}^{2}+x_{4}^{3}&&x_{2}+x_{3}+x_{4}+x_{5}&&\\x_{4}&x_{4}^{4}&&x_{3}^{2}+x_{3}x_{4}+x_{4}^{2}+x_{4}x_{5}+x_{5}^{2}+x_{3}x_{5}&&&\\&&x_{4}^{3}+x_{4}^{2}x_{5}+x_{4}x_{5}^{2}+x_{5}^{3}&&&&\\x_{5}&x_{5}^{4}&&&&&\\\end{matrix}}\\\\{\begin{matrix}x_{0}&x_{0}^{5}&&&&&&\\&&\sum _{i=0}^{4}x_{0}^{4-i}x_{1}^{i}&&&&\\x_{1}&x_{1}^{5}&&\sum _{i=0}^{3}\sum _{j=0}^{3-i}x_{0}^{3-i-j}x_{1}^{j}x_{2}^{i}&&&&\\&&\sum _{i=0}^{4}x_{1}^{4-i}x_{2}^{i}&&\sum _{i=0}^{2}\sum _{j=0}^{2-i}\sum _{k=0}^{2-i-j}x_{0}^{2-i-j-k}x_{1}^{k}x_{2}^{j}x_{3}^{i}&&&\\x_{2}&x_{2}^{5}&&\sum _{i=0}^{3}\sum _{j=0}^{3-i}x_{1}^{3-i-j}x_{2}^{j}x_{3}^{i}&&\sum _{i=0}^{4}x_{i}&&\\&&\sum _{i=0}^{4}x_{2}^{4-i}x_{3}^{i}&&\sum _{i=0}^{2}\sum _{j=0}^{2-i}\sum _{k=0}^{2-i-j}x_{1}^{2-i-j-k}x_{2}^{k}x_{3}^{j}x_{4}^{i}&&1&\\x_{3}&x_{3}^{5}&&\sum _{i=0}^{3}\sum _{j=0}^{3-i}x_{2}^{3-i-j}x_{3}^{j}x_{4}^{i}&&\sum _{i=1}^{5}x_{i}&&0\\&&\sum _{i=0}^{4}x_{3}^{4-i}x_{4}^{i}&&\sum _{i=0}^{2}\sum _{j=0}^{2-i}\sum _{k=0}^{2-i-j}x_{2}^{2-i-j-k}x_{3}^{k}x_{4}^{j}x_{5}^{i}&&1&\\x_{4}&x_{4}^{5}&&\sum _{i=0}^{3}\sum _{j=0}^{3-i}x_{3}^{3-i-j}x_{4}^{j}x_{5}^{i}&&\sum _{i=2}^{6}x_{i}&&\\&&\sum _{i=0}^{4}x_{4}^{4-i}x_{5}^{i}&&\sum _{i=0}^{2}\sum _{j=0}^{2-i}\sum _{k=0}^{2-i-j}x_{3}^{2-i-j-k}x_{4}^{k}x_{5}^{j}x_{6}^{i}&&&\\x_{5}&x_{5}^{5}&&\sum _{i=0}^{3}\sum _{j=0}^{3-i}x_{4}^{3-i-j}x_{5}^{j}x_{6}^{i}&&&&\\&&\sum _{i=0}^{4}x_{5}^{4-i}x_{6}^{i}&&&&&\\x_{6}&x_{6}^{5}&&&&&&\\\end{matrix}}\\\end{array}}}$
2. ^
{\displaystyle {\begin{aligned}{\mathopen {[}}y_{0}]&=y_{0}\\{\mathopen {[}}y_{0},y_{1}]&={\frac {y_{1}-y_{0}}{x_{1}-x_{0}}}\\&={\frac {y_{0}}{x_{0}-x_{1}}}+{\frac {y_{1}}{x_{1}-x_{0}}}\\{\mathopen {[}}y_{0},y_{1},y_{2}]&={\frac {{\frac {y_{1}}{x_{1}-x_{2}}}+{\frac {y_{2}}{x_{2}-x_{1}}}-{\frac {y_{0}}{x_{0}-x_{1}}}-{\frac {y_{1}}{x_{1}-x_{0}}}}{x_{2}-x_{0}}}\\&={\frac {y_{0}}{(x_{0}-x_{1})(x_{0}-x_{2})}}+{\frac {y_{1}}{(x_{1}-x_{0})(x_{1}-x_{2})}}+{\frac {y_{2}}{(x_{2}-x_{0})(x_{2}-x_{1})}}\\{\mathopen {[}}y_{0},y_{1},\dots ,y_{n}]&=\sum _{j=0}^{n}{\frac {y_{j}}{\prod _{k=0,\,k\neq j}^{n}x_{j}-x_{k}}}\\{\mathopen {[}}y_{0},y_{1},\dots ,y_{n+1}]&={\frac {\sum _{j=1}^{n+1}{\frac {y_{j}}{\prod _{k=1,\,k\neq j}^{n+1}x_{j}-x_{k}}}-\sum _{j=0}^{n}{\frac {y_{j}}{\prod _{k=0,\,k\neq j}^{n}x_{j}-x_{k}}}}{x_{n+1}-x_{0}}}\\&={\frac {{\frac {y_{n+1}}{\prod _{k=1}^{n}x_{n+1}-x_{k}}}+\sum _{j=1}^{n}y_{j}\left({\frac {1}{\prod _{k=1,\,k\neq j}^{n+1}x_{j}-x_{k}}}-{\frac {1}{\prod _{k=0,\,k\neq j}^{n}x_{j}-x_{k}}}\right)-{\frac {y_{0}}{\prod _{k=0}^{n}x_{0}-x_{k}}}}{x_{n+1}-x_{0}}}\\&={\frac {{\frac {y_{n+1}}{\prod _{k=1}^{n}x_{n+1}-x_{k}}}+\sum _{j=1}^{n}y_{j}\left({\frac {x_{j}-x_{0}}{\prod _{k=0,\,k\neq j}^{n+1}x_{j}-x_{k}}}-{\frac {x_{j}-x_{n+1}}{\prod _{k=0,\,k\neq j}^{n+1}x_{j}-x_{k}}}\right)-{\frac {y_{0}}{\prod _{k=0}^{n}x_{0}-x_{k}}}}{x_{n+1}-x_{0}}}\\&=\sum _{j=0}^{n+1}{\frac {y_{j}}{\prod _{k=0,\,k\neq j}^{n+1}x_{j}-x_{k}}}\end{aligned}}}
3. ^ 《数值分析及科学计算》 薛毅（编） 第六章 第2节 Newton插值. P200.
4. ^ 《数值分析及科学计算》 薛毅（编） 第六章 第2节 Newton插值. P201.
5. ^
${\displaystyle {\begin{matrix}x_{0}&x_{0}^{3}&&&&\\&&x_{0}^{2}+x_{0}x_{1}+x_{1}^{2}&&\\x_{1}&x_{1}^{3}&&x_{0}+x_{1}+x_{2}&&\\&&x_{0}^{2}+x_{0}x_{2}+x_{2}^{2}&&1&\\x_{2}&x_{2}^{3}&&x_{0}+x_{1}+x_{3}&&0\\&&x_{0}^{2}+x_{0}x_{3}+x_{3}^{2}&&1&\\x_{3}&x_{3}^{3}&&x_{0}+x_{1}+x_{4}&&\\&&x_{0}^{2}+x_{0}x_{4}+x_{4}^{2}&&&\\x_{4}&x_{4}^{3}&&&&\\\end{matrix}}}$
6. ^
{\displaystyle {\begin{aligned}\triangle ^{k}y_{i}&=\sum _{j=0}^{k}{\frac {k!}{\prod _{l=0,\,l\neq j}^{k}j-l}}y_{i+j},\quad 0\leq k\leq n-i\\&=\sum _{j=0}^{k}{\frac {k!}{j!(-1)^{k-j}(k-j)!}}y_{i+j},\quad 0\leq k\leq n-i\\&=\sum _{j=0}^{k}(-1)^{k-j}{\binom {k}{j}}y_{i+j},\quad 0\leq k\leq n-i\end{aligned}}}