基数排序

维基百科,自由的百科全书
跳转至: 导航搜索
基数排序
分類 排序算法
數據結構 数组
最差時間複雜度 O(kN)
最差空間複雜度 O(kN)

基数排序英语Radix sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。基数排序的发明可以追溯到1887年赫尔曼·何乐礼打孔卡片制表机(Tabulation Machine)上的贡献[1]

它是这样实现的:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

基数排序的方式可以采用LSD(Least significant digital)或MSD(Most significant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。

效率[编辑]

基数排序的时间复杂度是O(k·n),其中n是排序元素个数,k是数字位数。注意这不是说这个时间复杂度一定优于O(n·log(n)),k的大小取决于数字位的选择(比如比特位数),和待排序数据所属数据类型的全集的大小;k决定了进行多少轮处理,而n是每轮处理的操作数目。

以排序n个不同整数来举例,假定这些整数以B为底,这样每位数都有B个不同的数字,k = logB(N),N是待排序数据类型全集的势。虽然有B个不同的数字,需要B个不同的桶,但在每一轮处理中,判断每个待排序数据项只需要一次计算确定对应数位的值,因此在每一轮处理的时候都需要平均n次操作来把整数放到合适的桶中去,所以就有:

  • k约等于logB(N)

所以,基数排序的平均时间T就是:

T~= logB(Nn

其中前一项是一个与输入数据无关的常数,当然该项不一定小于logn

如果考虑和比较排序进行对照,基数排序的形式复杂度虽然不一定更小,但由于不进行比较,因此其基本操作的代价较小,而且在适当选择的B之下,k一般不大于logn,所以基数排序一般要快过基于比较的排序,比如快速排序。

实现[编辑]

C++[编辑]

int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
    int maxData = data[0];		///< 最大数
    /// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
    for (int i = 1; i < n; ++i)
    {
        if (maxData < data[i])
            maxData = data[i];
    }
    int d = 1;
    int p = 10;
    while (maxData >= p)
    {
        p *= 10;
        ++d;
    }
    return d;
/*    int d = 1; //保存最大的位数
    int p = 10;
    for(int i = 0; i < n; ++i)
    {
        while(data[i] >= p)
        {
            p *= 10;
            ++d;
        }
    }
    return d;*/
}
void radixsort(int data[], int n) //基数排序
{
    int d = maxbit(data, n);
    int *tmp = new int[n];
    int *count = new int[10]; //计数器
    int i, j, k;
    int radix = 1;
    for(i = 1; i <= d; i++) //进行d次排序
    {
        for(j = 0; j < 10; j++)
            count[j] = 0; //每次分配前清空计数器
        for(j = 0; j < n; j++)
        {
            k = (data[j] / radix) % 10; //统计每个桶中的记录数
            count[k]++;
        }
        for(j = 1; j < 10; j++)
            count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
        for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
        {
            k = (data[j] / radix) % 10;
            tmp[count[k] - 1] = data[j];
            count[k]--;
        }
        for(j = 0; j < n; j++) //将临时数组的内容复制到data中
            data[j] = tmp[j];
        radix = radix * 10;
    }
    delete []tmp;
    delete []count;
}

C[编辑]

#include<stdio.h>
#define MAX 20
//#define SHOWPASS
#define BASE 10

void print(int *a, int n) {
  int i;
  for (i = 0; i < n; i++) {
    printf("%d\t", a[i]);
  }
}

void radixsort(int *a, int n) {
  int i, b[MAX], m = a[0], exp = 1;

  for (i = 1; i < n; i++) {
    if (a[i] > m) {
      m = a[i];
    }
  }

  while (m / exp > 0) {
    int bucket[BASE] = { 0 };

    for (i = 0; i < n; i++) {
      bucket[(a[i] / exp) % BASE]++;
    }

    for (i = 1; i < BASE; i++) {
      bucket[i] += bucket[i - 1];
    }

    for (i = n - 1; i >= 0; i--) {
      b[--bucket[(a[i] / exp) % BASE]] = a[i];
    }

    for (i = 0; i < n; i++) {
      a[i] = b[i];
    }

    exp *= BASE;

#ifdef SHOWPASS
    printf("\nPASS   : ");
    print(a, n);
#endif
  }
}

int main() {
  int arr[MAX];
  int i, n;

  printf("Enter total elements (n <= %d) : ", MAX);
  scanf("%d", &n);
  n = n < MAX ? n : MAX;

  printf("Enter %d Elements : ", n);
  for (i = 0; i < n; i++) {
    scanf("%d", &arr[i]);
  }

  printf("\nARRAY  : ");
  print(&arr[0], n);

  radixsort(&arr[0], n);

  printf("\nSORTED : ");
  print(&arr[0], n);
  printf("\n");

  return 0;
}

Python[编辑]

#!/usr/bin/env python
#encoding=utf-8

import math
def sort(a, radix=10):
    """a为整数列表, radix为基数"""
    K = int(math.ceil(math.log(max(a), radix))) # 用K位数可表示任意整数
    bucket = [[] for i in range(radix)] # 不能用 [[]]*radix
    for i in range(1, K+1): # K次循环
        for val in a:
            bucket[val%(radix**i)/(radix**(i-1))].append(val) # 析取整数第K位数字 (从低到高)
        del a[:]
        for each in bucket:
            a.extend(each) # 桶合并
        bucket = [[] for i in range(radix)]

Lua[编辑]

-- 获取表中位数
local maxBit = function (tt)
    local weight = 10;      -- 十进制
    local bit = 1;
    
    for k, v in pairs(tt) do
        while v >= weight do
            weight = weight * 10;
            bit = bit + 1;  
        end
    end
    return bit;
end
-- 基数排序
local radixSort = function (tt)
    local maxbit = maxBit(tt); 

    local bucket = {};
    local temp = {};
    local radix = 1;
    for i = 1, maxbit do
        for j = 1, 10 do
            bucket[j] = 0;      --- 清空桶
        end
        for k, v in pairs(tt) do
            local remainder = math.floor((v / radix)) % 10 + 1;    
            bucket[remainder] = bucket[remainder] + 1;      -- 每个桶数量自增
        end
        
        for j = 2, 10 do
            bucket[j] = bucket[j - 1] + bucket[j];  -- 每个桶的数量 = 以前桶数量和 + 自个数量
        end 
        -- 按照桶的位置,排序--这个是桶式排序,必须使用倒序,因为排序方法是从小到大,顺序下来,会出现大的在小的上面清空。
        for k = #tt, 1, -1 do
            local remainder = math.floor((tt[k] / radix)) % 10 + 1;
            temp[bucket[remainder]] = tt[k];
            bucket[remainder] = bucket[remainder] - 1;
        end
        for k, v in pairs(temp) do
            tt[k] = v;
        end
        radix = radix * 10;
    end
end;

参考文献[编辑]