外觀數列

维基百科,自由的百科全书
跳转至: 导航搜索

外觀數列(Look-and-say sequence)第n項描述了第n-1項的數字分布。它以1開始:

  1. 1:讀作1個「1」,即11
  2. 11:讀作2個「1」,即21
  3. 21:讀作1個「2」,1個「1」,即1211
  4. 1211:讀作1個「1」,1個「2」,2個「1」,即111221
  5. 111221:讀作3個「1」,2個「2」,1個「1」,即312211
1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ... (OEIS中的数列A005150

如果從 0 至 9 中的任選一個d數字生成這個數列,那么可以確定d會保留在每一項的最后一位,如果d不是1的話,那么這個數列是:

d, 1d, 111d, 311d, 13211d, 111312211d, 31131122211d, …

伊蘭·瓦爾迪把 d = 3 時的數列稱為康威數列[1]OEIS中的数列A006715)。(d = 2 時的數列見OEISA006751

性質[编辑]

画在复平面上的康威多项式的。最右处标注λ的实根为康威常数。
  • 除了1,2,3之外,沒有其他數字,除非初始的種子使用了其他數字,或者初始種子包含連續三個以上的相同數字。
  • 這個數列的增長是不確定的。但是如果使用 22 來生成這個數列,可以得到一個退化的數列:22, 22, 22, 22, ... (OEIS中的数列A010861
  • 每生成下一項,數字大約加長30%。設 是第項的長度,則
其中OEIS中的数列A014715)稱為康威常數,它是下面71次方程唯一一個正實數解:

來由[编辑]

這個數列最初出現在約翰·何頓·康威1986年論文 The Weird and Wonderful Chemistry of Audioactive Decay[2](收錄在Open Problems in Communication and Computation ISBN 0-387-96621-8)。它的靈感來自壓縮方法RLE(Run-length encoding)。

外觀數列又被稱為莫里斯數列,得名於密碼學家羅伯特·莫里斯英语Robert_Morris_(cryptographer)

參考資料[编辑]

  1. ^ Conway Sequence, MathWorld, accessed on line February 4, 2011.
  2. ^ Conway, John. The Weird and Wonderful Chemistry of Audioactive Decay. Eureka. January 1986, 46: 5–16. 

外部連結[编辑]