# 大菱形三十面體

30
60

10個菱形的公共頂點
6個菱形的公共頂點

(對偶多面體)

## 性質

### 頂點座標

${\displaystyle (0,\pm {\frac {5-{\sqrt {5}}}{8}},\pm {\frac {3{\sqrt {5}}-5}{8}})}$
${\displaystyle (\pm {\frac {5-{\sqrt {5}}}{8}},\pm {\frac {3{\sqrt {5}}-5}{8}},0)}$
${\displaystyle (\pm {\frac {3{\sqrt {5}}-5}{8}},0,\pm {\frac {5-{\sqrt {5}}}{8}})}$
${\displaystyle (\pm {\frac {\sqrt {5}}{4}},0,\pm {\frac {3{\sqrt {5}}-5}{8}})}$
${\displaystyle (0,\pm {\frac {3{\sqrt {5}}-5}{8}},\pm {\frac {\sqrt {5}}{4}})}$
${\displaystyle (\pm {\frac {3{\sqrt {5}}-5}{8}},\pm {\frac {\sqrt {5}}{4}},0)}$
${\displaystyle (\pm {\frac {5-{\sqrt {5}}}{8}},\pm {\frac {5-{\sqrt {5}}}{8}},\pm {\frac {5-{\sqrt {5}}}{8}})}$

## 參考文獻

1. Wenninger, Magnus. Polyhedron Models. Cambridge University Press. 1974. ISBN 0-521-09859-9.
2. Wenninger, Magnus. Dual Models. Cambridge University Press. 1983. ISBN 0-521-54325-8.
3. Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. The fifty-nine icosahedra 3rd. Tarquin. 1999. ISBN 978-1-899618-32-3. MR676126. (1st Edn University of Toronto (1938))
1. ^
2. ^ Edmund Hess, Über vier Archimedeische Polyeder höherer Art, Schriften der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg 11(4) (1878).
3. ^ Johann Pitsch, Über Halbreguläre Sternpolyeder, Zeitschrift für das Realschulwesen 6 (1881), 9-24, 64-65, 72-89, 216.
4. ^ great rhombic triacontahedron. bulatov.org.
5. ^ Kabai, S. Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica. Püspökladány, Hungary: Uniconstant, p. 183, 2002.
6. ^ Data of Great Rhombic Triacontahedron. dmccooey.com.
7. ^ Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, p. 103, 1973. ISBN 978-0486614809
8. ^ Great Rhombic Triacontahedron 3x3x3. twisty puzzles.
9. ^ Rubik's Great Rhombic Triacontahedron. twisty puzzles.
10. ^