对数正态分布

维基百科,自由的百科全书
跳转至: 导航搜索
对数正态分布
Plot of the Lognormal PMF
μ=0
概率密度函數
Plot of the Lognormal CMF
μ=0
累積分佈函數
參數
支撑集
概率密度函数
累積分佈函數
期望值
中位數
眾數
方差
偏度
峰度
信息熵
動差生成函數 (参见原始动差文本)
特性函数 is asymptotically divergent but sufficient for numerical purposes

概率论统计学中,对数正态分布对数正态分布的任意随机变量概率分布。如果 X 是正态分布的随机变量,则 exp(X) 为对数正态分布;同样,如果 Y 是对数正态分布,则 ln(Y) 为正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。 对于 ,对数正态分布的概率密度函数

其中 分别是变量对数平均值標準差。它的期望值

方差

给定期望值与方差,也可以用这个关系求

与几何平均值和几何标准差的关系[编辑]

对数正态分布、几何平均数几何标准差是相互关联的。在这种情况下,几何平均值等于 ,几何平均差等于

如果采样数据来自于对数正态分布,则几何平均值与几何标准差可以用于估计置信区间,就像用算术平均数与标准差估计正态分布的置信区间一样。

置信区间界 对数空间 几何
3σ 下界
2σ 下界
1σ 下界
1σ 上界
2σ 上界
3σ 上界

其中几何平均数 ,几何标准差

[编辑]

原始为:

或者更为一般的矩

局部期望[编辑]

随机变量 在阈值 上的局部期望定义为

其中 是概率密度。对于对数正态概率密度,这个定义可以表示为

其中 是标准正态部分的累积分布函数。对数正态分布的局部期望在保险业及经济领域都有应用,著名的Black-Scholes期权定价公式便可由此推导出。

参数的最大似然估计[编辑]

为了确定对数正态分布参数 μ 与 σ 的最大似然估计,我们可以采用与正态分布参数最大似然估计同样的方法。我们来看

其中用 表示对数正态分布的概率密度函数,用 — 表示正态分布。因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:

由于第一项相对于 μ 与 σ 来说是常数,两个对数最大似然函数 在同样的 μ 与 σ 处有最大值。因此,根据正态分布最大似然参数估计器的公式以及上面的方程,我们可以推导出对数正态分布参数的最大似然估计

相关分布[编辑]

  • 如果 ,则 正态分布
  • 如果 是有同样 μ 参数、而 σ 可能不同的统计独立对数正态分布变量 ,并且 ,则 Y 也是对数正态分布变量:

进一步的阅读资料[编辑]

参考文献[编辑]

参见[编辑]