# 對稱多項式

## 例子

• ${\displaystyle P(X_{1},X_{2})=X_{1}{}^{3}+X_{2}{}^{3}-7}$
• ${\displaystyle P(X_{1},X_{2})=4X_{1}X_{2}}$

• ${\displaystyle P(X_{1},X_{2},X_{3})=X_{1}X_{2}X_{3}-2X_{1}X_{2}-2X_{1}X_{3}-2X_{2}X_{3}}$

${\displaystyle D(X_{1},\dots ,X_{n})=\prod _{1\leq i

## 單變數首一多項式的根

${\displaystyle f(t)=t^{n}+a_{n-1}t^{n-1}+\cdots +a_{2}t^{2}+a_{1}t+a_{0}}$

${\displaystyle t^{n}+a_{n-1}t^{n-1}+\cdots +a_{2}t^{2}+a_{1}t+a_{0}=(t-x_{1})(t-x_{2})\cdots (t-x_{n})}$

{\displaystyle {\begin{aligned}a_{n-1}&=-x_{1}-x_{2}-\cdots -x_{n}\\a_{n-2}&=x_{1}x_{2}+x_{1}x_{3}+\cdots +x_{2}x_{3}+\cdots +x_{n-1}x_{n}=\textstyle \sum _{1\leq i

${\displaystyle (t+X_{1})(t+X_{2})\cdots (t+X_{n})}$

## 對稱多項式基本定理

${\displaystyle X_{1}^{3}+X_{2}^{3}-7=(X_{1}+X_{2})^{3}-3X_{1}X_{2}(X_{1}+X_{2})-7}$

## 一些常見的對稱多項式

### 單項對稱多項式

${\displaystyle m_{(3,1,1)}(X_{1},X_{2},X_{3})=X_{1}^{3}X_{2}X_{3}+X_{1}X_{2}^{3}X_{3}+X_{1}X_{2}X_{3}^{3}}$,
${\displaystyle m_{(3,2,1)}(X_{1},X_{2},X_{3})=X_{1}^{3}X_{2}^{2}X_{3}+X_{1}^{3}X_{2}X_{3}^{2}+X_{1}^{2}X_{2}^{3}X_{3}+X_{1}^{2}X_{2}X_{3}^{3}+X_{1}X_{2}^{3}X_{3}^{2}+X_{1}X_{2}^{2}X_{3}^{3}.}$

${\displaystyle e_{k}(X_{1},\ldots ,X_{n})=m_{\alpha }(X_{1},\ldots ,X_{n})}$

### 次方和對稱多項式

${\displaystyle p_{k}(X_{1},\ldots ,X_{n})=X_{1}^{k}+X_{2}^{k}+\cdots +X_{n}^{k}.}$

${\displaystyle p_{3}(X_{1},X_{2})=\textstyle {\frac {3}{2}}p_{2}(X_{1},X_{2})p_{1}(X_{1},X_{2})-{\frac {1}{2}}p_{1}(X_{1},X_{2})^{3}.}$

${\displaystyle m_{(2,1)}(X_{1},X_{2})=X_{1}^{2}X_{2}+X_{1}X_{2}^{2}}$

${\displaystyle m_{(2,1)}(X_{1},X_{2})=\textstyle {\frac {1}{2}}p_{1}(X_{1},X_{2})^{3}-{\frac {1}{2}}p_{2}(X_{1},X_{2})p_{1}(X_{1},X_{2}).}$

{\displaystyle {\begin{aligned}m_{(2,1)}(X_{1},X_{2},X_{3})&=X_{1}^{2}X_{2}+X_{1}X_{2}^{2}+X_{1}^{2}X_{3}+X_{1}X_{3}^{2}+X_{2}^{2}X_{3}+X_{2}X_{3}^{2}\\&=p_{1}(X_{1},X_{2},X_{3})p_{2}(X_{1},X_{2},X_{3})-p_{3}(X_{1},X_{2},X_{3}).\end{aligned}}}

### 完全齊次對稱多項式

${\displaystyle h_{3}(X_{1},X_{2},X_{3})=X_{1}^{3}+X_{1}^{2}X_{2}+X_{1}^{2}X_{3}+X_{1}X_{2}^{2}+X_{1}X_{2}X_{3}+X_{1}X_{3}^{2}+X_{2}^{3}+X_{2}^{2}X_{3}+X_{2}X_{3}^{2}+X_{3}^{3}.}$

{\displaystyle {\begin{aligned}h_{3}(X_{1},X_{2},X_{3})&=m_{(3)}(X_{1},X_{2},X_{3})+m_{(2,1)}(X_{1},X_{2},X_{3})+m_{(1,1,1)}(X_{1},X_{2},X_{3})\\&=(X_{1}^{3}+X_{2}^{3}+X_{3}^{3})+(X_{1}^{2}X_{2}+X_{1}^{2}X_{3}+X_{1}X_{2}^{2}+X_{1}X_{3}^{2}+X_{2}^{2}X_{3}+X_{2}X_{3}^{2})+(X_{1}X_{2}X_{3}).\\\end{aligned}}}

${\displaystyle X_{1}^{3}+X_{2}^{3}-7=-2h_{1}(X_{1},X_{2})^{3}+3h_{1}(X_{1},X_{2})h_{2}(X_{1},X_{2})-7.}$

${\displaystyle \sum _{i=0}^{k}(-1)^{i}e_{i}(X_{1},\ldots ,X_{n})h_{k-i}(X_{1},\ldots ,X_{n})=0}$

## 参考资料

• Lang, Serge, Algebra, Graduate Texts in Mathematics 211 Revised third, New York: Springer-Verlag, 2002, ISBN 978-0-387-95385-4, MR1878556
• Macdonald, I.G. (1979), Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Oxford: Clarendon Press.
• I.G. Macdonald (1995), Symmetric Functions and Hall Polynomials, second ed. Oxford: Clarendon Press. ISBN 0-19-850450-0 (paperback, 1998).
• Richard P. Stanley (1999), Enumerative Combinatorics, Vol. 2. Cambridge: Cambridge University Press. ISBN 0-521-56069-1