小斜方截半立方体

维基百科,自由的百科全书
跳转至: 导航搜索
小斜方截半立方體
小斜方截半立方体
(按這裡觀看旋轉模型)
類別 半正多面體
26
48
頂點 24
歐拉特徵數 F=26, E=48, V=24 (χ=2)
面的種類 正三角形
正方形
面的佈局英语Face configuration 8{3}+(6+12){4}
頂點圖英语Vertex figure 3.4.4.4
考克斯特符號英语Coxeter-Dynkin diagram CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW ring.png
施萊夫利符號 r\begin{Bmatrix} 3 \\ 4 \end{Bmatrix}
威佐夫符號英语Wythoff symbol 3 4 | 2
康威表示法 lrCO
對稱群 Oh
參考索引 U10, C22, W13
對偶 鳶形二十四面體
特性 -
立體圖 Small rhombicuboctahedron vertfig.png
3.4.4.4
(頂點圖)
Deltoidalicositetrahedron.jpg
鳶形二十四面體
(對偶多面體)
Rhombicuboctahedron flat.png
(展開圖)

幾何學中,小斜方截半立方體,又稱為菱方八面體,是一種有18個正方形和8個正三角形阿基米德立體。小斜方截半立方體共有26個、48條以及24個頂點,具有點可遞性質,因此既是均勻多面體也是半正多面體

性質[编辑]

小斜方截半立方体每八条棱可以成为一个正八边形,共可以形成六個獨立的正八邊形。

體積與表面積[编辑]

边长为a的小斜方截半立方体,其表面积A和体积V如下:

表面积A = (18+2\sqrt{3})a^2 \approx 21.4641016a^2

体积V = \frac{1}{3} (12+10\sqrt{2})a^3 \approx 8.71404521a^3

座標[编辑]

邊長為2且幾何中心位於原點的小斜方截半立方體,其頂點座標為:

\left(\pm1, \pm1, \pm(1+\sqrt{2})\right)

的全排列。邊長為1的小斜方截半立方體,其對偶多面體鳶形二十四面體的邊長為:

\frac{2}{7}\sqrt{10-\sqrt{2}}\sqrt{4-2\sqrt{2}}.\

与其他幾何體的關聯[编辑]

若將小斜方截半立方體扭曲使面不再是正多邊形,則它的頂點仍然會保持均勻。他們可以透過將立方體或八面體先截去所有的稜再截去所有的頂點而成,因此所得的多面體會有6個正方形面和12矩形面。他們具有八面體對稱並可以形成立方體和八面體之間的連續變形系列,類似於小斜方截半二十面體的變形或由四面體扭曲成的截半立方體。然而,小斜方截半立方體還具有另外的一系列不具有八面體對稱而是四面體對稱的變形,因此它們與四面體相同旋轉對稱但不同的反射對稱下是不變的,這些變體包含6個長方形面以及16個梯形面。若沿著三階魔術方塊的可轉動邊緣投射到球體,則會的到一個與小斜方截半立方體類似的拓撲結構,小斜方截半立方體邊緣的線條與該種圖形完全相同。事實上,有一些魔術方塊的變體就是小斜方截半立方體[1]

小斜方截半立方體能夠成三種空間均勻堆砌,但不能獨立完成堆砌,都要跟其他立體圖行一同完成堆砌。這三種空間均勻堆砌分別為:截棱立方體堆砌截面斜截立方體堆砌英语Runcic cantitruncated cubic honeycomb以及截面立方體堆砌英语Runcitruncated cubic honeycomb

拆解[编辑]

小斜方截半立方體可以被切割成上下兩個正四角帳塔和中間一個正八角柱。若將上下兩個正四角帳塔的其中一個水平旋轉45度的話,則會形成偽小斜方截半立方體,即異相雙四角台塔柱,它與小斜方截半立方體擁有相同的頂點布局:3.4.4.4。

小斜方截半立方體可以看作有三對互相平行的八邊形切面,因此上述的切割方式可以從三種不同的方式進行。其切割出來的正四角帳塔是一種詹森多面體。若將其切割出來的圖形,其中一個正四角帳塔水平旋轉45度之後重新組合則會形成一個看起來與小斜方截半立方體十分相近的不同立體,稱為異相雙四角台塔柱或偽小斜方截半立方體,其也是詹森多面體的一種。若將中間的正八角柱拿掉的話,小斜方截半立方體會變成同相雙四角台塔,而偽小斜方截半立方體會變成異相雙四角台塔,這兩個多面體也是詹森多面體。而這些屬於「異相」的多面體都是四角反棱柱的對稱性。

Exploded rhombicuboctahedron.png Small rhombicuboctahedron.png
小斜方截半立方體
Pseudorhombicuboctahedron.png
偽小斜方截半立方體

作法[编辑]

将一个立方体正八面体)十二条棱都切一刀,在八(六)个顶点处也切一刀,就可以得到一个小斜方截半立方体。該動作會先得到一個倒角立方體,然後再顶点处也切一刀後即得到小斜方截半立方體。

正交投影[编辑]

小斜方截半立方體的正交投影
建立於 頂點 三角形-四邊形
交棱
四邊形-四邊形
交棱
正方形面 正三角形面
圖像 Cube t02 v.png Cube t02 e34.png Cube t02 e44.png Cube t02 f4b.png 3-cube t02 B2.svg 3-cube t02.svg
投影對稱性 [2] [2] [2] [2] [4] [6]
對偶的正交投影 Dual cube t02 v.png Dual cube t02 e34.png Dual cube t02 e44.png Dual cube t02 f4b.png Dual cube t02 B2.png Dual cube t02.png

球面鑲嵌[编辑]

Uniform tiling 432-t02.png Rhombicuboctahedron stereographic projection square.png
(6) 以正方形為中心
Rhombicuboctahedron stereographic projection square2.png
(6) 另一種以正方形為中心
Rhombicuboctahedron stereographic projection triangle.png
(8) 以正三角形為中心
平行投影 施莱格尔投影英语Schlegel diagram

五角十二面體對稱群[编辑]

Rhombicuboctahedron uniform edge coloring.png
均勻的形狀
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
Cantic snub octahedron.png
不均勻的形狀
Rhombicuboctahedron pyritohedral.png
不均勻的形狀
Rhombicuboctahedron pyritohedral2.png
到在極限情況下會
變成一個二十面體
扭稜八面體: CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png,
從兩個位置之一。
Rhombicuboctahedron pyritohedral compound.png
二複合二十面體
從兩個交替位置。

頂點排佈[编辑]

共有三種多面體與小斜方截半立方體有著相同的頂點排佈。他們分別為:

Small rhombicuboctahedron.png
小斜方截半立方體
Small cubicuboctahedron.png
小立方立方八面體英语Small cubicuboctahedron
Small rhombihexahedron.png
小斜方六面体英语Small rhombihexahedron
Stellated truncated hexahedron.png
星形截角六面體英语Stellated truncated hexahedron

应用[编辑]

由於小斜方截半立方體的形狀僅由正方形跟正三角形構成,且十分接近球體,繪製或製作都相對簡單,因此常出現在各種領域中,如藝術。

煤精印[编辑]

煤精印外表是一個小斜方截半立方體,在正方形面18個,三角形面8個中,其中有14個正方形面上鐫刻有印文[2],小斜方截半立方體擁有26個面,也導致了該印章是目前已發現的中國古代多面印章中印面印章[3]。小斜方截半立方體一共有18個正方形面,其中14個正方形面上印有“臣信上疏”、“臣信上章”、“臣信上表”、“臣信启事”、“大司马印”、“大都督印”、“刺史之印”、“柱国之印”、“耶勅”、“信启事”、“信白笺”、“密”、“令”、“独孤信白书”且皆为阴文楷书,它的发现证明早在南北朝时期,古人已经开始在印章中使用楷书,纠正了原先学界关于楷书入印最早为隋唐时期的观点。[4][3]

藝術[编辑]

Pacioli.jpg
小斜方截半立方體出現在1495年盧卡·帕西奧利的肖像畫作中[5]
Leonardo polyhedra.png
達文西帕西奧利神曲的設計 , 1509: "Vigintisexbasium Planum Vacuum".[6]

較大的小斜方截半立方體出現在1495年盧卡·帕西奧利的肖像畫作中(傳統上對此畫作者有爭議,認為是雅各布·德巴爾巴里)。該畫作左上角有一個裝半滿水的小斜方截半立方體形狀的玻璃容器。首個有小斜方截半立方體的藝術畫作則是出現在達芬奇1509年的帕西奧利神曲

雖然球形180×360°的全景可以投影到任何多面體,但小斜方截半立方體是一個更簡單更且十分近似球體的形狀,這種類型的投影,稱為斐洛球(英语:Philosphere),可用於全景圖合成成軟體中。部分能做成實體的全景圖合成成軟體是利用由單獨列印的兩個可利用剪刀剪下有留下黏貼處的圖像,即把全景圖製成小斜方截半立方體的展開圖,來做成斐洛球[7]

遊戲與玩具[编辑]

一個Cabela's英语Cabela's研發的能「自我修復」的防彈材料

遊戲《自由空間》中的關卡〈鑽井機〉和〈黑暗之地〉遊戲中的地圖形狀是一個小斜方截半立方體。

超级马里奥银河的〈慌張銀河〉關卡中也有一個小斜方截半立方體形狀的行星。

魔棍解成球形的樣子,外觀類似小斜方截半立方體

《音速小子3》的Icecap Zone關卡也有以小斜方截半立方體為特色的柱子。

此外,由於三階魔術方塊的切割處(可旋轉的面)與小斜方截半立方體的邊緣同構,或者說,將小斜方截半立方體的邊緣投影至球體與三階魔術方塊的切割處投影至求替完全一致,因此外型為小斜方截半立方體形式的魔術方塊可以是一種三階魔術方塊的變體。

魔術方塊在1980年代流行期間,twisty puzzle曾經發售過小斜方截半立方體形式的魔術方塊。

魔術方塊的變體魔棍玩具在販售時通常會將其轉成小斜方截半立方體的形狀出售,12個方塊被替換成1:√2的矩形。

Cabela's英语Cabela's研發的能「自我修復」的防彈材料如右圖,其示範的模形形狀與小斜方截半立方體十分接近。

相關多面體及鑲嵌[编辑]

對稱性英语List_of_spherical_symmetry_groups: [4,3], (*432)英语Octahedral symmetry [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)英语Tetrahedral symmetry
[3+,4]
(3*2)英语pyritohedral symmetry
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} c{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Truncated rhombic dodecahedron2.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.png
對偶多面體
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V4.62/63 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Tetrakis cuboctahedron.png Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg

參見[编辑]

註釋[编辑]

參考文獻[编辑]

  1. ^ Soviet Puzzle Ball. TwistyPuzzles.com. [23 December 2015]. 
  2. ^ 国宝档案2009年第309期——煤精印(上). 央视网. 
  3. ^ 3.0 3.1 国宝档案2009年第310期——煤精印(下). 央视网. 
  4. ^ “天下第一岳父”煤精印. 内蒙古日报. 2011-11-01. 
  5. ^ THE ENIGMA OF LUCA PACIOLI'S PORTRAIT. RitrattoPacioli.it. 
  6. ^ Da divina proportione, 第XXXVI页
  7. ^ 3-D panorama printing: enter physical reality.... philohome.com. 

外部連結[编辑]