小斜方截半立方體堆砌

维基百科,自由的百科全书
跳转至: 导航搜索
小斜方截半立方體堆砌
HC A5-A3-P2.png
Cantellated cubic tiling.png
線架圖
類型 均勻堆砌
維度 3
rr{4,3} Uniform polyhedron-43-t02.png
r{4,3} Uniform polyhedron-43-t1.png
{4,3} Uniform polyhedron-43-t0.png
{3} Alchemy fire symbol.svg
{4} Kvadrato.svg
顶点图 Cantellated cubic honeycomb verf.png
(Wedge)
施萊夫利符號 rr{4,3,4}
t0,2{4,3,4}
考克斯特記號英语Coxeter–Dynkin_diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
對稱群
空間群 Pm3m (221)
考克斯特群 [4,3,4],
纖維流形 4:2
對偶多胞體 quarter oblate octahedrille
特性 顶点正英语vertex-transitive

幾何學中,小斜方截半立方體堆砌是一種歐幾里得三維空間的半正堆砌,是由小斜方截半立方體截半立方體正方體以1:1:3的比例堆砌而成。

康威小斜方截半立方體堆砌2-RCO-trille[1],因為它可以藉由對應的康威多面體變換而構造出來。其可以視為立方體堆砌經過「小斜方截半」變換構造而來,也可以視為由小斜方截半立方體堆砌而得,但小斜方截半立方體無法單獨堆砌,必須和其他多面體一起堆砌,而小斜方截半立方體堆砌是小斜方截半立方體、截半立方體和正方體共同堆砌而得。

自然界中的小斜方截半立方體堆砌[编辑]

小斜方截半立方體堆砌關係到鈣鈦礦結構英语perovskite structure,在該結構中,每一個原子代表小斜方截半立方體堆砌的一個胞。

鈣鈦礦結構

對稱性與表面塗色[编辑]

小斜方截半立方體堆砌有兩種不同對稱性的表面塗色,其中第二種表面塗色為小斜方截半立方體交錯地塗色。

胞的表面塗色
結構 截半立方體 交替過截角立方體
考克斯特群 [4,3,4],
=<[4,31,1]>
[4,31,1],
空間群 Pm3m Fm3m
考克斯特符號英语Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png
表面塗色 Cantellated cubic honeycomb.png Cantellated cubic honeycomb2.png
頂點圖 Cantellated cubic honeycomb verf.png Runcicantellated alternate cubic honeycomb verf.png
頂點

對稱性
[ ]
order 2
[ ]+
order 1

参考文獻[编辑]

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (包含11个凸半正镶嵌、28个凸半正堆砌、和143个凸半正四维砌的全表)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication参与编辑, 1995, ISBN 978-0-471-01003-6 [1]
    • (22页) H.S.M.考克斯特, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 半正空间镶嵌)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)