層級分析法

维基百科,自由的百科全书
跳到导航 跳到搜索
Thomas L. Saaty

層級分析法英语:Analytic Hierarchy Process, AHP)為 1971 年Thomas L. Saaty (匹茲堡大學教授)所發展出來,主要應用在不確定情況下及具有多數個評估準則的決策問題上。 層級分析法發展的目的是將複雜的問題系統化,由不同層面給予層級分解,並透過量化的運算,找到脈絡後加以綜合評估。

1971年,Saaty 替美國國防部從事應變計畫問題(Contingency Planning Problem)的研究,並於 1972 年在美國國家科學基金會資助下,進行各產業電力合理分配的研究。1972 年 7 月,Saaty 在開羅替埃及政府從事『無和平、無戰爭』(No Peace, No War)對埃及經濟、政治狀況的影響研究時,開始將有關的判斷尺度化。1973 年,Saaty 將 AHP 法應用在蘇丹運輸研究後,整個理論才趨成熟;其後在 1974 年至 1978 年間,經不斷應用修正及證明後,使得整個理論更臻完備。1980 年,Saaty 遂將此一理論整理成專書問世,隨後在 1982 年至 1987 年間,相繼出版有關 AHP 理論的專著共三冊。AHP 發展以來,在國際期刊發表的相關論文不斷的出現,而且應用的範圍也相當的廣泛。

方法介紹[编辑]

層級分析法可以將複雜的決策情境區分為數個小部分,再將這些小部分組織成為一個樹狀的層次結構,並匯整專家意見,以評估尺度針對每一個部分的相對重要性給予權重數值,其後建立成對比較矩陣,並求出特徵向量及特徵值,以該特徵向量代表每一層級中各部分的優先權,能提供決策者充分的決策資訊並組織有關決策的評選條件或標準(criteria)、權重(weight)和分析(analysis),且能減少決策錯誤的風險性。

AHP的評估尺度作為每一層級指標因素間的成對比較,基本劃分包括五項,即等強(Equal Strong)、稍強(Weak Strong)、頗強(Strong)、極強(Very Strong)、絕強(Absolution),並賦予名目尺度1、3、5、7、9的衡量值,另設四個尺度介於五個基本尺度之間,並賦予2、4、6、8的衡量值,共計九個尺度,各尺度所代表之意義如下表所示。

評估尺度 定義 說明
1 同等重要 兩要素的貢獻程度具同等重要性
3 稍微重要 經驗與判斷稍微偏好某一要素
5 頗為重要 經驗與判斷強烈偏好某一要素
7 極為重要 實際顯示非常強烈偏好某一要素
9 絕對重要 有足夠證據肯定絕對偏好某一要素
2,4,6,8 相鄰尺度之中間值 介於兩種判斷之間

在AHP層級分析法操作流程中,第一步驟首先問題描述,而後判別影響要素並建立層級結構,並設計問卷項目,而後依問卷收集的數據資料找出各層級間決策屬性的相對重要性,並依此建立成對比較矩陣用以計算矩陣特徵值與特徵向量,所得出的數據經由一致性檢定及層級結構一致性檢定的回饋修正後,便可計算出各指標之權重以協助選出最適決策方案。

參考文獻[编辑]

1.Saaty, Thomas L.; Peniwati, Kirti (2008). Group Decision Making: Drawing out and Reconciling Differences. Pittsburgh, Pennsylvania: RWS Publications. ISBN 978-1-888603-08-8.

2.Saaty, Thomas L. (June 2008). "Relative Measurement and its Generalization in Decision Making: Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors – The Analytic Hierarchy/Network Process" (PDF). Review of the Royal Academy of Exact, Physical and Natural Sciences, Series A: Mathematics (RACSAM) 102 (2): 251–318. doi:10.1007/bf03191825. Retrieved 2008-12-22.