岩泽分解

维基百科,自由的百科全书
跳转至: 导航搜索

数学中,半单李群岩泽分解 KAN 推广了实方阵能写成一个正交矩阵上三角矩阵的乘积(格拉姆-施密特正交化之推论)。以创立者日本数学家岩泽健吉命名。

定义[编辑]

  • G 是一个连通半单实李群。
  • G李代数
  • 复化
  • θ 是 的一个嘉当对合
  • 是相应的嘉当分解
  • 的一个极大阿贝尔子空间。
  • Σ 是 的限定根,对应于 作用在 上的特征值。
  • Σ+ 是 Σ 的正根。
  • 是由 Σ+ 的根空间的和给出的幂零李代数。
  • K,A, N 分别是由 生成的子群。

那么,岩泽分解

G 的岩泽分解为:

.

A (或等价的 )的维数称为 G实秩

盐泽分解对一些不连通半单李群G 也成立,此时 K 为(不连通)极大紧子群并假定 G中心为有限。

例子[编辑]

如果 G=GLn(R),那么可取 K 为正交矩阵,A 为正对角矩阵,N幂幺群(对角元全1的上三角矩阵)。

参见[编辑]

参考文献[编辑]

  • Fedenko, A.S.; Shtern, A.I., I/i053060, (编) Hazewinkel, Michiel, 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4 
  • A. W. Knapp, Structure theory of semisimple Lie groups, in ISBN 0-8218-0609-2: Representation Theory and Automorphic Forms: Instructional Conference, International Centre for Mathematical Sciences, March 1996, Edinburgh, Scotland (Proceedings of Symposia in Pure Mathematics) by T. N. Bailey (Editor), Anthony W. Knapp (Editor)
  • 岩泽健吉,On some types of topological groups. Annals of Mathematics (2) 50, (1949), 507–558.