# 巴克豪森稳定性准则

## 準則

A是放大元件的增益，而β(jω)是回授電路的传递函数，則βA是回授電路的环路增益，巴克豪森稳定性准则指出，只有在以下的頻率下，電路才會有穩態的振盪：

1. 迴路增益的絕對值等於1，${\displaystyle |\beta A|=1\,}$
2. 迴路產生的相位移為0或是2π的整數倍，${\displaystyle \angle \beta A=2\pi n,n\in \{0,1,2,\dots \}\,.}$

## 參考資料

1. ^ Basu, Dipak. Dictionary of Pure and Applied Physics. CRC Press. 2000: 34–35. ISBN 1420050222.
2. ^ Rhea, Randall W. Discrete Oscillator Design: Linear, Nonlinear, Transient, and Noise Domains. Artech House. 2010: 3. ISBN 978-1608070480.
3. ^ Carter, Bruce; Ron Mancini. Op Amps for Everyone, 3rd Ed.. Newnes. 2009: 342–343. ISBN 978-0080949482.
4. ^ Barkhausen, H. Lehrbuch der Elektronen-Röhren und ihrer technischen Anwendungen [Textbook of Electron Tubes and their Technical Applications] 3. Leipzig: S. Hirzel. 1935. ASIN B0019TQ4AQ. OCLC 682467377 （德语）.
5. ^ Lindberg, Erik. The Barkhausen Criterion (Observation ?) (PDF). Proceedings of 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010), Dresden, Germany. Inst. of Electrical and Electronic Engineers: 15–18. 26–28 May 2010 [2 February 2013]. （原始内容 (PDF)存档于4 March 2016）. discusses reasons for this. (Warning: large 56MB download)
6. ^ von Wangenheim, Lutz, On the Barkhausen and Nyquist stability criteria, Analog Integrated Circuits and Signal Processing (Springer Science+Business Media, LLC), 2010, 66 (1): 139–141, ISSN 1573-1979, S2CID 111132040, doi:10.1007/s10470-010-9506-4. Received: 17 June 2010 / Revised: 2 July 2010 / Accepted: 5 July 2010.
7. ^ Lundberg, Kent. Barkhausen Stability Criterion. Kent Lundberg. MIT. 14 November 2002 [16 November 2008]. （原始内容存档于7 October 2008）.