布豐投針問題

维基百科,自由的百科全书
跳转至: 导航搜索
Buffon needle.gif

18世紀,布豐提出以下問題:設我們有一個以平行且等距木紋舖成的地板(如右圖),現在隨意拋一支長度比木紋之間距離小的,求針和其中一條木紋相交的概率。這就是布豐投針問題(又译“蒲丰投針問題”)。

使用積分幾何能找到此題的解,並得出一個求π蒙特·卡羅方法

解法[编辑]

設針的長度是,平行線之間的距離為為針的中心和最近的平行線的距離,為針和線之間的銳角

均匀分布,其機率密度函數

且均匀分布,其機率密度函數為

兩個隨機變數互相獨立,因此兩者結合的機率密度函數只是兩者的

,針和線相交,然後對積分得出所求機率。

要求上式的積分需要分為兩種情況:“短針”以及“長針”;以下考慮“短針”情況,計算上式積分得針與線相交的機率:

作簡單變換可得,

當拋支針,其中有支針與線相交,利用多次重複試驗所觀察事件發生的頻率越來越接近機率的理論值

近似可得

Lazzarini的估計[编辑]

1901年意大利數學家Mario Lazzarini嘗試進行此實驗。他拋了3408次針,得到π的近似值為355/113。

Lazzarini選取了一支長度是紋的距離的5/6的針。在這個情況,針和紋相交的機會是5/(3π)。如果想拋n次針而得到x次相交,π約等於。分母、分子少於五位數字,沒有比355/113更好的π的近似值了。因此,可以列式,得

為求x的值接近這個數,可以重覆拋213次針,若有113次是成功的,便可終止實驗,宣布這個方法求π值準確度不低;否則,就再拋213次針,希望共有226次成功……這次反覆進行實驗。Lazzarini做了次。