平行六面体

维基百科,自由的百科全书
跳转至: 导航搜索
平行六面体
平行六面体
平行六面体
類別 柱體
6
12
頂點 8
歐拉特徵數 F=6, E=12, V=8 (χ=2)
面的種類 平行四邊形×6
威佐夫符號英语Wythoff symbol 2 4 | 2
對稱群 Ci, [2+,2+], (×), order 2
對偶 平行四面軸正軸體
特性 , 環帶多面體

几何学中,平行六面体是由六个平行四边形所组成的三维立体。它与平行四边形的关系,正如正方体正方形之间的关系;在欧几里得几何中这四个概念都允许,但在仿射几何中只允许平行四边形和平行六面体。平行六面体的三个等价的定义为:

  • 六个面都是平行四边形的多面体
  • 有三对对面平行的六面体;
  • 底面为平行四边形的棱柱

长方体(六个面都是长方形)、正方体(六个面都是正方形),以及菱面体(六个面都是菱形)都是平行六面体的特殊情况。

平行六面体是拟柱体的一个子类。

性质[编辑]

平行六面体可由正方体线性变换而成。

用相同的平行六面体,可以镶嵌整个空间。

体积[编辑]

基本公式[编辑]

平行六面体的体积是底面 与高 的乘积,即

这里的高是底面与对面的垂直距离。


以向量計算[编辑]

用向量来定义平行六面体。

另外一个方法是用向量 ,以及 来表示相交于一点的三条棱。平行六面体的体积 等于純量三重积

證明

来表示底面的边,则根据向量积的定义,底面的面积 为:

其中 之间的角,而高为:

其中 之间的角。

从图中我们可以看到, 的大小限定为 。而向量 之间的角 则有可能大于90°()。也就是说,由于 平行, 的值要么等于 ,要么等于 。因此:

我们得出结论:

于是,根据純量积的定义,它等于 的绝对值,即:

证毕。

最后一个表达式也可以写成以下行列式的绝对值:


以稜長及夾角計算[编辑]

是三條兩兩相鄰的稜長,且 是三條稜邊的夾角,則平行六面体的体积為:

證明

從上面可知,平行六面体的体积可表示為:

其中:

因此

依行列式及純量積定義展開公式右手邊,即可得上述公式。


以座標計算[编辑]

選取任意一頂點 以其相鄰三個頂點 ,則體積可表示為:

解析失败 (未知函数“\begin{bmatrix}”): {\displaystyle V = \left| \det \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \\ ==特殊情况== 如果平行六面体具有对称平面,则一定是以下两种情况之一: *四个面是长方形; *两个面是菱形,而在另外四个面中,两个相邻面相等,另外两个面也相等。 [[长方体]]是六个面都是[[长方形]]的平行六面体;[[正方体]]是六个面都是[[正方形]]的平行六面体。 [[菱面体]]是六个面都是[[菱形]]的平行六面体;[[三方偏方面体]]是所有菱形面都[[全等]]的菱面体。 ==完美平行六面體== 完美平行六面體指棱長、面對角線和體對角線都是整數的平行六面體。在2009年,發現了數十個完美平行六面體的例子<ref>{{Cite journal|first1=Jorge F.|last1=Sawyer|first2=Clifford A.|last2=Reiter|year=2011|title=Perfect parallelepipeds exist|journal=[[Mathematics of Computation]]|volume=80|pages=1037–1040|arxiv=0907.0220|doi=10.1090/s0025-5718-2010-02400-7}}.</ref>,包括棱長271、106及103,劣面對角線長101、 266及255,優面角線長183、 312及323,以及體對角線長374、 300、 278及272的平行六面體。 ==超平行体== 平行六面体在高维空间的推广称为'''超平行体'''。 特别地,n维空间中的超平行体称为''n''维超平行体。因此,平行四边形就是''2''维超平行体,平行六面体就是''3''维超平行体。 ''n''维超平行体的所有[[对角线]]相交于一点,并被这个点所平分。 位于<math>\mathbb{R}^m} 空间中的n维超平行体的n维体积(),可以用格拉姆行列式的方法来计算。

参考文献[编辑]

外部链接[编辑]