# 开世定理

## 叙述

${\displaystyle t_{12}\cdot t_{34}+t_{14}\cdot t_{23}-t_{13}\cdot t_{24}=0}$

${\displaystyle \,t_{12}\cdot t_{34}+t_{14}\cdot t_{23}=t_{13}\cdot t_{24}}$

## 证明

${\displaystyle \,t_{ij}^{2}={\overline {O_{i}O_{j}}}^{2}-(R_{i}-R_{j})^{2}\qquad \qquad \qquad \cdots \,\,(1)}$

${\displaystyle {\overline {O_{i}O_{j}}}^{2}={\overline {OO_{i}}}^{2}+{\overline {OO_{j}}}^{2}-2{\overline {OO_{i}}}\cdot {\overline {OO_{j}}}\cdot \cos \angle O_{i}OO_{j}\qquad \qquad \qquad \cdots \,\,(2)}$

${\displaystyle {\overline {OO_{i}}}=R-R_{i},\,\angle O_{i}OO_{j}=\angle K_{i}OK_{j}}$

${\displaystyle {\overline {K_{i}K_{j}}}=2R\cdot \sin \angle K_{i}CK_{j}=2R\cdot \sin {\frac {\angle K_{i}OK_{j}}{2}}}$

${\displaystyle \cos \angle K_{i}OK_{j}=1-2\sin ^{2}{\frac {\angle K_{i}OK_{j}}{2}}=1-2\cdot \left({\frac {\overline {K_{i}K_{j}}}{2R}}\right)^{2}=1-{\frac {{\overline {K_{i}K_{j}}}^{2}}{2R^{2}}}}$

${\displaystyle {\overline {O_{i}O_{j}}}^{2}=(R-R_{i})^{2}+(R-R_{j})^{2}-2(R-R_{i})(R-R_{j})\left(1-{\frac {{\overline {K_{i}K_{j}}}^{2}}{2R^{2}}}\right)}$
${\displaystyle =(R-R_{i})^{2}+(R-R_{j})^{2}-2(R-R_{i})(R-R_{j})+(R-R_{i})(R-R_{j})\cdot {\frac {{\overline {K_{i}K_{j}}}^{2}}{R^{2}}}}$
${\displaystyle =((R-R_{i})-(R-R_{j}))^{2}+(R-R_{i})(R-R_{j})\cdot {\frac {{\overline {K_{i}K_{j}}}^{2}}{R^{2}}}}$
${\displaystyle =(R_{i}-R_{j})^{2}+(R-R_{i})(R-R_{j})\cdot {\frac {{\overline {K_{i}K_{j}}}^{2}}{R^{2}}}}$

${\displaystyle t_{ij}={\sqrt {{\overline {O_{i}O_{j}}}^{2}-(R_{i}-R_{j})^{2}}}={\frac {{\sqrt {R-R_{i}}}\cdot {\sqrt {R-R_{j}}}\cdot {\overline {K_{i}K_{j}}}}{R}}}$

${\displaystyle t_{12}t_{34}+t_{14}t_{23}={\frac {1}{R^{2}}}\cdot {\sqrt {R-R_{1}}}{\sqrt {R-R_{2}}}{\sqrt {R-R_{3}}}{\sqrt {R-R_{4}}}\left({\overline {K_{1}K_{2}}}\cdot {\overline {K_{3}K_{4}}}+{\overline {K_{1}K_{4}}}\cdot {\overline {K_{2}K_{3}}}\right)}$
${\displaystyle ={\frac {1}{R^{2}}}\cdot {\sqrt {R-R_{1}}}{\sqrt {R-R_{2}}}{\sqrt {R-R_{3}}}{\sqrt {R-R_{4}}}\left({\overline {K_{1}K_{3}}}\cdot {\overline {K_{2}K_{4}}}\right)=t_{13}t_{24}}$

## 注释

1. ^ Roger A. Johnson. Advanced Euclidean Geometry, p.123-125

## 参考书籍

• （英文） Roger A. Johnson. Advanced Euclidean Geometry. Dover. 2007. ISBN 978-0-486-46237-0.，p.123-125 （1929年曾以《现代几何学》（modern geometry）之名出版。）.
• （英文）O. Bottema, Reinie Erne. Topics in Elementary Geometry. Springer. 2008. ISBN 978-0-387-78130-3.