恩格尔展开式

维基百科,自由的百科全书
跳转至: 导航搜索

Engel展開式是一個正整數數列,使得一個正實數可以以一種唯一的方式表示成埃及分數之和:

有理數的展開式是有限的,無理數的是無限的。Engel 展开式得名于 F. Engel,他在 1913 年研究了它们。

Engel展开与连分数[编辑]

Kraaikamp 和 Wu (2004年) 发现 Engel 展开可以被看作是连分数的上升变体。

算法[编辑]

表示最小的整數大於或等於

,則停止。

例子[编辑]

k uk ak uk+1
1 3/7 3 2/7
2 2/7 4 1/7
3 1/7 7 0

參考[编辑]

  • Engel, F. Entwicklung der Zahlen nach Stammbruechen. Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg: 190–191. 1913. 
  • Kraaikamp, Cor; Wu, Jun. On a new continued fraction expansion with non-decreasing partial quotients. Monatshefte für Mathematik. 2004, 143: 285–298. doi:10.1007/s00605-004-0246-3. 

外部連結[编辑]