# 截半正七邊形鑲嵌

3.7.3.7

(對偶多面體)

## 圖片

 克萊因圓盤模型保留了直線，但是扭曲了角度 截半正七邊形鑲嵌的對偶鑲嵌稱為七階三菱形鑲嵌（英语：Order-7-3 rhombille tiling），由七個和三個菱形交錯的頂點組成。

## 相關半正鑲嵌

*n32
[n,3]

*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]

[iπ/λ,3]

3.3.3.3

3.4.3.4

3.5.3.5

3.6.3.6

3.7.3.7

3.8.3.8

3.∞.3.∞

3.∞.3.∞

(菱形)

V3.3.3.3

V3.4.3.4

V3.5.3.5

V3.6.3.6

V3.7.3.7

V3.8.3.8

V3.∞.3.∞

{7,3} t{7,3} r{7,3} 2t{7,3}=t{3,7} 2r{7,3}={3,7} rr{7,3} tr{7,3} sr{7,3}

V73 V3.14.14 V3.7.3.7 V6.6.7 V37 V3.4.7.4 V4.6.14 V3.3.3.3.7

*7n2
[n,7]

*732
[3,7]
*742
[4,7]
*752
[5,7]
*762
[6,7]
*772
[7,7]
*872
[8,7]...
*∞72
[∞,7]

[iπ/λ,7]

3.7.3.7

4.7.4.7

7.5.7.5

7.6.7.6

7.7.7.7

7.8.7.8

7.∞.7.∞

7.∞.7.∞

## 參考文獻

1. ^ Grünbaum, Branko ; and Shephard, G. C. Tilings and Patterns. New York: W. H. Freeman. 1987. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p.58-65)
2. ^ Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979: 38. ISBN 0-486-23729-X.
3. ^ Arlan Ramsay, Robert D. Richtmyer, Introduction to Hyperbolic Geometry, Springer; 1 edition (December 16, 1995)