截角正五胞体

10
5 (3.3.3)
5 (3.6.6)
30
20 {3}
10 {6}
40

Irr. tetrahedron

Ak

A4 A3 A2
Graph

坐标

 ${\displaystyle \left({\frac {3}{\sqrt {10}}},\ {\sqrt {3 \over 2}},\ \pm {\sqrt {3}},\ \pm 1\right)}$ ${\displaystyle \left({\frac {3}{\sqrt {10}}},\ {\sqrt {3 \over 2}},\ 0,\ \pm 2\right)}$ ${\displaystyle \left({\frac {3}{\sqrt {10}}},\ {\frac {-1}{\sqrt {6}}},\ {\frac {2}{\sqrt {3}}},\ \pm 2\right)}$ ${\displaystyle \left({\frac {3}{\sqrt {10}}},\ {\frac {-1}{\sqrt {6}}},\ {\frac {4}{\sqrt {3}}},\ 0\right)}$ ${\displaystyle \left({\frac {3}{\sqrt {10}}},\ {\frac {-5}{\sqrt {6}}},\ {\frac {1}{\sqrt {3}}},\ \pm 1\right)}$ ${\displaystyle \left({\frac {3}{\sqrt {10}}},\ {\frac {-5}{\sqrt {6}}},\ {\frac {-2}{\sqrt {3}}},\ 0\right)}$ ${\displaystyle \left(-{\sqrt {2 \over 5}},\ {\sqrt {2 \over 3}},\ {\frac {2}{\sqrt {3}}},\ \pm 2\right)}$ ${\displaystyle \left(-{\sqrt {2 \over 5}},\ {\sqrt {2 \over 3}},\ {\frac {-4}{\sqrt {3}}},\ 0\right)}$ ${\displaystyle \left(-{\sqrt {2 \over 5}},\ -{\sqrt {6}},\ 0,\ 0\right)}$ ${\displaystyle \left({\frac {-7}{\sqrt {10}}},\ {\frac {1}{\sqrt {6}}},\ {\frac {1}{\sqrt {3}}},\ \pm 1\right)}$ ${\displaystyle \left({\frac {-7}{\sqrt {10}}},\ {\frac {1}{\sqrt {6}}},\ {\frac {-2}{\sqrt {3}}},\ 0\right)}$ ${\displaystyle \left({\frac {-7}{\sqrt {10}}},\ -{\sqrt {3 \over 2}},\ 0,\ 0\right)}$

参考文献

• H.S.M. Coxeter:
• H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
• Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
• (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
• (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
• Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
• Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
• Norman Johnson Uniform Polytopes, Manuscript (1991)
• N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
• Olshevsky, George, Pentachoron at Glossary for Hyperspace.
• Richard Klitzing, 4D, uniform polytopes (polychora) x3x3o3o - tip, o3x3x3o - deca