截角立方体

维基百科,自由的百科全书
跳转至: 导航搜索
截角立方體
截角立方体
(按這裡觀看旋轉模型)
類別 半正多面體
14
36
頂點 24
歐拉特徵數 F=14, E=36, V=24 (χ=2)
面的種類 正三角形
正八邊形
面的佈局英语Face configuration 8{3}+6{8}
頂點圖英语Vertex figure 3.8.8
考克斯特符號英语Coxeter-Dynkin diagram CDW ring.pngCDW 4.pngCDW ring.pngCDW 3.pngCDW dot.png
施萊夫利符號 t{4,3}
威佐夫符號英语Wythoff symbol 2 3 | 4
康威表示法 tC
對稱群 Oh
參考索引 U09, C21, W8
對偶 三角化八面體
特性 -
立體圖 Truncated cube vertfig.png
3.8.8
(頂點圖)
Triakisoctahedron.jpg
三角化八面體
(對偶多面體)
Truncated hexahedron flat.svg
(展開圖)

在幾何學中,截角立方体是一種十四面體,由八個正三角形與六個正八邊形組成,具有14個、24個頂點以及36條。是一種阿基米德立體[1],屬於半正多面體。其對偶多面體三角化八面體

性質[编辑]

截角立方體是一種適當截角的立方體。截角時確定了截面的邊與沒截到的長度等長,因此會形成正八邊形。過度截角到最後會變成截半立方體

截角立方體的對偶多面體三角化八面體,若截角立方體的邊長是2,則其對偶的邊常會變成單位長。

座標[编辑]

一個邊長為2ξ、幾何中心位於原點的截角立方體,其頂點座標為:

(±ξ, ±1, ±1),
(±1, ±ξ, ±1),
(±1, ±1, ±ξ)
其中 ξ =

參數ξ的值可以在±1之間變化。值為1時產生一個立方體、值為0時是截半立方體,負值會變成自我相交八角星面。

Truncated cube sequence.png

體積與表面積[编辑]

截角立方體的表面積,體積,其中是該截半立方體的邊長[2]

表面積 =
體積 =

作法[编辑]

立方體進行截角操作,也就是將立方體的八個頂點切去並在被切掉的地方建立八個正三角形面即可得到一個截角立方體

正交投影[编辑]

截角立方體具有五個特殊正交投影,可分為三大類:以頂點為中心、以邊緣為中心(稜)、以及以面為中心。以頂點為中心僅有一種,以邊緣(稜)為中心有兩種:以三角形-八邊形邊為中心和以八邊形-八邊形邊為中心;以面為中心也是兩種:以三角形面為中心以及以八邊形面為中心。最後兩個對應B2和A2考克斯特平面。

截角立方體的正交投影
建立方式 頂點
3-8

8-8

八邊形

三角形
截角立方體 Cube t01 v.png Cube t01 e38.png Cube t01 e88.png 3-cube t01 B2.svg 3-cube t01.svg
三角化八面體
(對偶多面體)
Dual truncated cube t01 v.png Dual truncated cube t01 e8.png Dual truncated cube t01 e88.png Dual truncated cube t01 B2.png Dual truncated cube t01.png
投影
對稱性
[2] [2] [2] [4] [6]

球面鑲嵌[编辑]

Uniform tiling 432-t01.png Truncated cube stereographic projection octagon.png
正八邊形為中心
Truncated cube stereographic projection triangle.png
正三角形為中心
平行投影 施莱格尔投影英语Schlegel diagram

分解[编辑]

一個被分解的截角立方體

截角立方體可以分割成一個中央立方體、周圍六個四角帳塔跟角落八個正四面體。這種結構也可以在大斜方截半立方體堆砌中發現,其具有立方體、正四面體以及小斜方截半立方體的胞。

這種分解方式去除兩個四角帳塔和中間的立方體可以用來構造斯圖爾特環形所有正的面,這種「被挖空的」立方體有16個三角形,正方形12,和4個八邊形[3][4]

Excavated truncated cube.png

頂點排佈[编辑]

共有三種多面體與截角立方體有著相同的頂點排佈。他們分別為:

Truncated hexahedron.png
截角立方體
Uniform great rhombicuboctahedron.png
非凸大小斜方截半立方體英语Nonconvex great rhombicuboctahedron
Great cubicuboctahedron.png
大立方立方八面體英语Great cubicuboctahedron
Great rhombihexahedron.png
大斜方立方體英语Great rhombihexahedron

相關多面體及鑲嵌[编辑]

截角立方體是立方體經過截角變換後的結果,與立方體相關的多面體還有:

半正正八面体家族多面体
对称性: [4,3], (*432) [4,3]+, (432) [1+,4,3], (*332) [4,3+], (3*2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t2.png Uniform polyhedron-43-h01.svg
{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}
半正多面体的对偶
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Dodecahedron.svg
V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3

變異對稱[编辑]

此多面體的拓撲結構屬於考克斯特對稱群[n,3]構成的一系列頂點配置為(3.2n.2n)和n.8.8的均勻截角多面體和鑲嵌家族的一部分。

截角立方體的面組成方式是一個正八邊形與正三角形交錯組成。同樣由正多邊形與正三角形交錯組成的多面體或鑲嵌圖包括:

*n32變異對稱性的截角鑲嵌英语Template:Truncated figure1 table: 3.2n.2n
對稱性
*n32
[n,3]
球面鑲嵌英语List_of_spherical_symmetry_groups 歐氏鑲嵌英语List_of_planar_symmetry_groups 緊湊雙曲 非緊雙曲
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
截角鑲嵌 Spherical triangular prism.png Uniform tiling 332-t01-1-.png Uniform tiling 432-t01.png Uniform tiling 532-t01.png Uniform tiling 63-t01.png H2 tiling 237-3.png H2 tiling 238-3.png H2 tiling 23i-3.png
頂點英语Vertex configuration 3.4.4 3.6.6 3.8.8 3.10.10 3.12.12 3.14.14英语Truncated_heptagonal_tiling 3.16.16英语Truncated octagonal tiling 3.∞.∞英语Truncated order-3 apeirogonal tiling
三角化
鑲嵌
Spherical trigonal bipyramid.png Spherical triakis tetrahedron.png Spherical triakis octahedron.png Spherical triakis icosahedron.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Ord7 triakis triang til.png Ord8 triakis triang til.png Ord-infin triakis triang til.png
頂點英语Vertex configuration V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14英语Truncated_heptagonal_tiling#Dual_tiling V3.16.16英语Truncated_octagonal_tiling#Dual_tiling V3.∞.∞英语Truncated_order-3_apeirogonal_tiling#Dual_tiling

如上所述,截角立方體的面組成方式是一個正八邊形與正三角形交錯組成。另外一種就是視為正八邊形與其他正多邊形交錯組成。具有此性質的多面體或鑲嵌圖包括:

*n42變異對稱性的截角鑲嵌: n.8.8
對稱性
*n42英语Orbifold notation
[n,4]
球面鑲嵌英语List_of_spherical_symmetry_groups 歐氏鑲嵌英语List_of_planar_symmetry_groups 緊湊雙曲鑲嵌 仿緊雙曲鑲嵌
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
截角
Hexagonal dihedron.png Uniform tiling 432-t01.png Uniform tiling 44-t12.png H2 tiling 245-6.png H2 tiling 246-6.png H2 tiling 247-6.png H2 tiling 248-6.png H2 tiling 24i-6.png
頂點英语Vertex configuration 2.8.8 3.8.8 4.8.8 5.8.8英语Truncated order-5 square tiling 6.8.8英语Truncated order-6 square tiling 7.8.8英语Truncated order-7 square tiling 8.8.8 ∞.8.8英语Truncated infinite-order square tiling
n-角化
Spherical octagonal hosohedron.png Spherical triakis octahedron.png 1-uniform 2 dual.svg Order-4 pentakis pentagonal tiling.png Order4 hexakis hexagonal til.png Order4 heptakis heptagonal til.png Uniform tiling 83-t2.png Ord4 apeirokis apeirogonal til.png
頂點英语Vertex configuration V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8

交錯截角[编辑]

截角立方體是將立方體每一個頂點切去,而立方體具有偶數個頂點(8個),且每個面的角數量也是偶數個(正方形有四個角)因此可以進行交錯截角。交錯截角立方體是一個倒角四面體

Alternate truncated cube.png

多胞體[编辑]

截角立方體是截角超方形家族中的第二個成員,相關的多胞體包括:

截角超方形
Regular polygon 8 annotated.svg 3-cube t01.svgTruncated hexahedron.png 4-cube t01.svgSchlegel half-solid truncated tesseract.png 5-cube t01.svg5-cube t01 A3.svg 6-cube t01.svg6-cube t01 A5.svg 7-cube t01.svg7-cube t01 A5.svg 8-cube t01.svg8-cube t01 A7.svg ...
截角正方形 截角立方體 截角超立方體 截角五维超正方体 截角六維超正方體英语Truncated 6-cube 截角七維超正方體英语Truncated 7-cube 截角八維超正方體英语Truncated 8-cube
CDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

參見[编辑]

參考文獻[编辑]

  1. ^ Cromwell, P. Polyhedra, CUP hbk (1997), pbk. (1999). Ch.2 p.79-86 Archimedean solids
  2. ^ MathWorldTruncated cube的资料,作者:埃里克·韦斯坦因
  3. ^ B. M. Stewart, Adventures Among the Toroids (1970) ISBN 978-0-686-11936-4
  4. ^ http://www.doskey.com/polyhedra/Stewart05.html
  • Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X.  (Section 3-9)
  • Cromwell, P. Polyhedra, CUP hbk (1997), pbk. (1999). Ch.2 p.79-86 Archimedean solids

外部連結[编辑]