# 折線

## 註釋

1. ^ 多邊形鏈（polygonal chain）有時也稱為多邊曲線（polygonal curve[1]）、多邊路徑（polygonal path[2]）、折線（polyline[3]、broken line[4][5]）、分段線性曲線（piecewise linear curve[3]），或者在地理信息系统中稱為線串（linestring）或線性環（linear ring）[6]

## 參考文獻

1. ^ Gomes, Jonas; Velho, Luiz; Costa Sousa, Mario, Computer Graphics: Theory and Practice, CRC Press: 186, 2012, ISBN 9781568815800.
2. ^ Cheney, Ward, Analysis for Applied Mathematics, Graduate Texts in Mathematics 208, Springer: 13, 2001, ISBN 9780387952796.
3. Boissonnat, Jean-Daniel; Teillaud, Monique, Effective Computational Geometry for Curves and Surfaces, Springer: 34, 2006, ISBN 9783540332596.
4. ^ Muggeo, Vito M. R., segmented: An R package to fit regression models with broken-line relationships (PDF), R News, May 2008, 8 (1): 20–25
5. 折線 polyline. 雙語詞彙、學術名詞暨辭書資訊網. 國家教育研究院. [2023-12-03]. （原始内容存档于2023-12-03）.
6. ^ Open Geospatial Consortium, Herring, John R. , 编, OpenGIS® Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture, 1.2.1, Open Geospatial Consortium, 2011-05-28 [2016-01-15], （原始内容存档于2017-01-29）
7. ^ 折線. 教育部重編國語辭典. [2023-11-17]. （原始内容存档于2023-11-17）.
8. ^ Mehlhorn, Kurt; Näher, Stefan, LEDA: A Platform for Combinatorial and Geometric Computing, Cambridge University Press: 758, 1999, ISBN 9780521563291.
9. ^ O'Rourke, Joseph, Computational Geometry in C, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press: 45, 1998, ISBN 9780521649766.
10. ^ Ramer, Urs, An iterative procedure for the polygonal approximation of plane curves, Computer Graphics and Image Processing, 1972, 1 (3): 244–256, doi:10.1016/S0146-664X(72)80017-0.
11. ^ Douglas, David; Peucker, Thomas, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, The Canadian Cartographer, 1973, 10 (2): 112–122, doi:10.3138/FM57-6770-U75U-7727.
12. ^ Tamassia, Roberto, On embedding a graph in the grid with the minimum number of bends, SIAM Journal on Computing, 1987, 16 (3): 421–444, doi:10.1137/0216030.
13. ^ Edelsbrunner, Herbert; Guibas, Leonidas J.; Stolfi, Jorge, Optimal point location in a monotone subdivision, SIAM Journal on Computing, 1986, 15 (2): 317–340, doi:10.1137/0215023.