# 數學之美

## 解法之美

• 用了少量額外假設或之前證明的結果。
• 極短的證明。
• 由意外的方式推導出的證明（即由表面上無關的一个定理或一群定理證明出另一結論）。
• 基於新的及原創的證明。
• 可以推廣，解决相似問題的證明方法。

## 腳註

1. ^ Russell, Bertrand. The Study of Mathematics. Mysticism and Logic: And Other Essays. Longman. 1919: 60 [2008-08-22]. （原始内容存档于2013-12-31）.
2. ^ Devlin, Keith. Do Mathematicians Have Different Brains?. The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip. Basic Books. 2000: 140 [2008-08-22]. ISBN 978-0-465-01619-8. （原始内容存档于2020-08-05）.
3. ^ 存档副本. [2018-08-08]. （原始内容存档于2018-08-27）.

## 參考文獻

• , and (2003), , 3rd edition, Springer-Verlag.
• 蘇布拉馬尼揚·錢德拉塞卡 (1987), Truth and Beauty. Aesthetics and Motivations in Science, University of Chicago Press, Chicago, IL.
• 雅克·阿達馬 (1949), The Psychology of Invention in the Mathematical Field, 1st edition, Princeton University Press, Princeton, NJ. 2nd edition, 1949. Reprinted, Dover Publications, New York, NY, 1954.
• G.H.Hardy (1940), A Mathematician's Apology, 1st published, 1940. Reprinted, C.P. Snow (foreword), 1967. Reprinted, Cambridge University Press, Cambridge, UK, 1992.
• Hoffman, Paul (1992), The Man Who Loved Only Numbers, Hyperion.
• Huntley, H.E. (1970), The Divine Proportion: A Study in Mathematical Beauty, Dover Publications, New York, NY.
• Loomis, Elisha Scott (1968), The Pythagorean Proposition, The National Council of Teachers of Mathematics. Contains 365 proofs of the Pythagorean Theorem.
• Peitgen, H.-O., and Richter, P.H. (1986), The Beauty of Fractals, Springer-Verlag.
• Strohmeier, John, and Westbrook, Peter (1999), Divine Harmony, The Life and Teachings of Pythagoras, Berkeley Hills Books, Berkeley, CA.