施特拉森演算法

维基百科,自由的百科全书
跳转至: 导航搜索

Strassen演算法是個計算矩陣乘法演算法


A, B F上的方矩陣。求兩者的積C

\mathbf{C} = \mathbf{A} \mathbf{B} \qquad \mathbf{A},\mathbf{B},\mathbf{C} \in F^{2^n \times 2^n}

(一般矩陣可以填0的方法計算令它成為2^n \times 2^n矩陣。)

A, B, C分成相等大小的方塊矩陣:

 
\mathbf{A} =
\begin{bmatrix}
\mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\
\mathbf{A}_{2,1} & \mathbf{A}_{2,2}
\end{bmatrix}
\mbox { , }
\mathbf{B} =
\begin{bmatrix}
\mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\
\mathbf{B}_{2,1} & \mathbf{B}_{2,2}
\end{bmatrix}
\mbox { , }
\mathbf{C} =
\begin{bmatrix}
\mathbf{C}_{1,1} & \mathbf{C}_{1,2} \\
\mathbf{C}_{2,1} & \mathbf{C}_{2,2}
\end{bmatrix}

\mathbf{A}_{i,j}, \mathbf{B}_{i,j}, \mathbf{C}_{i,j} \in F^{2^{n-1} \times 2^{n-1}}

於是

\mathbf{C}_{1,1} = \mathbf{A}_{1,1} \mathbf{B}_{1,1} + \mathbf{A}_{1,2} \mathbf{B}_{2,1}
\mathbf{C}_{1,2} = \mathbf{A}_{1,1} \mathbf{B}_{1,2} + \mathbf{A}_{1,2} \mathbf{B}_{2,2}
\mathbf{C}_{2,1} = \mathbf{A}_{2,1} \mathbf{B}_{1,1} + \mathbf{A}_{2,2} \mathbf{B}_{2,1}
\mathbf{C}_{2,2} = \mathbf{A}_{2,1} \mathbf{B}_{1,2} + \mathbf{A}_{2,2} \mathbf{B}_{2,2}

引入新矩陣

\mathbf{M}_{1} := (\mathbf{A}_{1,1} + \mathbf{A}_{2,2}) (\mathbf{B}_{1,1} + \mathbf{B}_{2,2})
\mathbf{M}_{2} := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2}) \mathbf{B}_{1,1}
\mathbf{M}_{3} := \mathbf{A}_{1,1} (\mathbf{B}_{1,2} - \mathbf{B}_{2,2})
\mathbf{M}_{4} := \mathbf{A}_{2,2} (\mathbf{B}_{2,1} - \mathbf{B}_{1,1})
\mathbf{M}_{5} := (\mathbf{A}_{1,1} + \mathbf{A}_{1,2}) \mathbf{B}_{2,2}
\mathbf{M}_{6} := (\mathbf{A}_{2,1} - \mathbf{A}_{1,1}) (\mathbf{B}_{1,1} + \mathbf{B}_{1,2})
\mathbf{M}_{7} := (\mathbf{A}_{1,2} - \mathbf{A}_{2,2}) (\mathbf{B}_{2,1} + \mathbf{B}_{2,2})

可得:

\mathbf{C}_{1,1} = \mathbf{M}_{1} + \mathbf{M}_{4} - \mathbf{M}_{5} + \mathbf{M}_{7}
\mathbf{C}_{1,2} = \mathbf{M}_{3} + \mathbf{M}_{5}
\mathbf{C}_{2,1} = \mathbf{M}_{2} + \mathbf{M}_{4}
\mathbf{C}_{2,2} = \mathbf{M}_{1} - \mathbf{M}_{2} + \mathbf{M}_{3} + \mathbf{M}_{6}

其中M_{i,j}的計算也是使用Strassen演算法求得。

評論[编辑]

一般矩陣乘法的時間複雜度為n^3=n^{log_2 8},Strassen演算法則是O(n^{log_2 7}) = O(n^{2.807})。有得必有失,Strassen演算法的數值穩定性較差。

現時時間複雜度最低的矩陣乘法演算法是Coppersmith-Winograd方法的一种扩展方法,其算法复杂度为O(n2.3727)[1]

References[编辑]

  1. ^ Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. 而1990年Coppersmith-Winograd方法提出时的算法复杂度为。O(n2.376)