最简分数

维基百科,自由的百科全书
跳转至: 导航搜索

最簡分數既约分数指的是分子分母互質分數。 若一分數可表為,且整數),,則稱最簡分數。 假若p和q還有別的公因數,則其非最簡分數。若,且設。其中的最簡分數。最簡分數也可參閱有理化分數的公式,盡量將分子和分母互為質數[1]。每一個正有理數可以被表示為不可簡化的分數[2]。如果分數的分子和分母劃分為它們的最大公因數,而這一項方法可以完全降低至最低的簡化條件[3]。為了找出分子和分母的最大公因數,當然可以使用輾轉相除法整数分解,就是要解決分數的分子和分母過大的問題[4]

最簡分數例如。而不是,因為,因而

唯一性[编辑]

每一個有理數沒有獨特性的表示正分母的不可簡化分數[2](雖然兩者 都是不可簡化的分數)。唯一性是獨一無二主要因子分解的結果,自從出現 意味著,因此等號的雙邊必須共享相同的因式分解,設主要多重的因數,而也要出現的子集,方可證明

概括[编辑]

不可簡化的分數的概念可推論任何唯一分解整環分式環:透過劃分分子和分母的最大公因數,這一項元素的領域中可被寫出它們的分數[5]。特別適用越過其他領域的代數式。然而不可簡化的分數在給定元素上,既使是同樣的可逆元素,也是唯一較多人使用分子和分母的乘法。在有理數的情況下意旨任何數字具有兩個最簡分數,若跟分子和分母的正負號有關;在這種模糊的情況下可透過要求分母要被移除負號。在合理的功能的情況下,分母可以類似地被要求是一個首項[6]

參見[编辑]

參考資料[编辑]

  1. ^ E.g., see Laudal, Olav Arnfinn; Piene, Ragni, The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo, June 3-8, 2002, Springer: 155, 2004 
  2. ^ 2.0 2.1 Scott, William, Elements of Arithmetic and Algebra: For the Use of the Royal Military College, College text books, Sandhurst. Royal Military College 1, Longman, Brown, Green, and Longmans: 75, 1844 .
  3. ^ Sally, Judith D.; Sally, Paul J., Jr., 9.1. Reducing a fraction to lowest terms, Integers, Fractions, and Arithmetic: A Guide for Teachers, MSRI mathematical circles library 10, American Mathematical Society: 131–134, 2012, ISBN 9780821887981 .
  4. ^ Cuoco, Al; Rotman, Joseph, Learning Modern Algebra, Mathematical Association of America Textbooks, Mathematical Association of America: 33, 2013, ISBN 9781939512017 .
  5. ^ Garrett, Paul B., Abstract Algebra, CRC Press: 183, 2007, ISBN 9781584886907 .
  6. ^ Grillet, Pierre Antoine, Abstract Algebra, Graduate Texts in Mathematics 242, Springer, Lemma 9.2, p. 183, 2007, ISBN 9780387715681 .