杨氏矩阵

维基百科,自由的百科全书
跳到导航 跳到搜索

在数学中,杨表英语:Young tableau),又称杨氏矩阵,是组合表示理论和舒伯特演算領域的常用工具。在對稱群一般线性群性質的研究中,楊表提供了一個方便的方式来描述的它們的群表示。杨表由剑桥大学数学家阿爾弗雷德·楊英语Alfred Young 在 1900 年提出[1][2]。接著於 1903 年被弗罗贝尼乌斯应用于对称群的研究中。他们的理论由许多数学家进一步发展,包括珀西·麥克馬洪英语Percy MacMahonW·V·D·賀智英语W. V. D. Hodge、G. de B. Robinson、吉安-卡洛·羅塔、Alain Lascoux、Marcel-Paul Schützenberger 和理查德·P·史丹利英语Richard P. Stanley 等。

定义[编辑]

一个 (1, 4, 5)分拆表示的杨表

杨表是由有限的方格组成。对于一个正整数,给定一个整数分拆λ(10=1+4+5),则对应一个杨表πλ (注意这是一个递降的过程,也就是说下面一行的方格数要大于等于上一行的方格数)。可以说杨表与整数分拆λ一一对应。

在表示理论的应用[编辑]

一个杨表的表示

给定一个杨表πλ ,一个有n个方格。那么把1到n这n个数字填到这个杨表中,使得每行从左到右都是递增的,每列从下到上也是递增的。用 dimπλ 表示这样的方法个数,如图,这个这种填写数字中的一种。我们有下面的勾长公式。

勾长[编辑]

一个杨表的勾长

对于杨表中的一个方格v,其勾长 hook(v)等于同行右边的方格数加上同列上面的方格数,再加上1(也就是他自己)。

勾长公式[编辑]

用 dimλ表示这样的方法个数,勾长公式就是方法个数等于n!除以所有方格的勾长的乘积。

对于分拆10 = 5 + 4 + 1 的应的杨表. 因此有

种方法。

參考資料[编辑]

  1. ^ Knuth, Donald E., The Art of Computer Programming, Vol. III: Sorting and Searching 2nd, Addison-Wesley: 48, 1973, Such arrangements were introduced by Alfred Young in 1900 .
  2. ^ Young, A., On quantitative substitutional analysis, Proceedings of the London Mathematical Society, Ser. 1, 1900, 33 (1): 97–145, doi:10.1112/plms/s1-33.1.97 . See in particular p. 133.