核密度估计

维基百科,自由的百科全书
跳转至: 导航搜索

核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属於非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。Ruppert和Cline基于数据集密度函数聚类算法提出修订的核密度估计方法。

100個常態分佈亂數的核密度估计

核密度估计在估计边界区域的时候会出现边界效应

在单变量核密度估计的基础上,可以建立风险价值的预测模型。通过对核密度估计变异系数的加权处理,可以建立不同的风险价值的预测模型。

一些比较常用的核函数是: 均匀核函数 k(x)=1/2,-1≤x≤1 加入带宽h后: kh(x)=1/(2h),-h≤x≤h

三角核函数 k(x)=1-|x|,-1≤x≤1 加入带宽h后: kh(x)=(h-|x|)/h^2,-h≤x≤h

伽马核函数 kxi(x)=[x^(α-1)exp{-xα/xi}]/[(xi/α)^α.Γ(α)]

参考文献[编辑]

  • 唐林俊、杨虎、张洪阳:核密度估计在预测风险价值中的应用 The Application of The Kernel Density Estimates in Predicting VaR,《数学的实践与认识》2005年10期