本页使用了标题或全文手工转换

核武器

维基百科,自由的百科全书
跳到导航 跳到搜索

核子武器,簡稱核武,是一种爆炸装置,其爆炸力是通过核反应(裂变(裂变炸弹)或裂变与聚变反应的组合(热核弹))产生的。

目前世界最大威力的核子武器類型是氫彈,其威力可達到同等質量的化學炸藥的數千萬倍以上。核子武器没有威力上限,投入的核材料的量越多,威力就越大,然而理論上其質能轉換效果較反物質武器低。前蘇聯的AN602氫彈是目前人類所引爆過的最大當量的炸彈。

現況[编辑]

目前有八個公開宣稱擁有核武器(不論是原子彈或是氫彈)的國家,分別是美国俄羅斯(前蘇聯)、英国中国法国巴基斯坦印度北韓,前五個也是聯合國安全理事會常任理事國。美國、俄羅斯(前蘇聯)、英國、中国、法国五國已完成氫彈試驗。

除此之外,以色列也被部分人認為擁有核武,哈薩克斯坦作為蘇聯解體後第三大核武器擁有國,主動放棄核武器,並關閉蘇軍建立的數千座核試驗設施,另外白俄羅斯烏克蘭南非因和平原因放棄其核武,屬於曾經擁有核武的國家。1990年代被稱為“巴基斯坦核彈之父”的阿卜杜勒·卡迪爾·汗已經對外承認了自己向北韓、利比亞伊朗三個國家出售核武關鍵技術。[1],其中北韓至少已於2006年核試驗成功,利比亞卡紮菲迫於美軍壓力已宣布放棄核武計劃,伊朗革命衛隊稱在俄、朝提供核彈頭所需鈈的協助下核武研發成功。[2]

國際原子能機構總幹事埃爾巴拉迪稱“有30個國家擁有迅速生產核武器的能力”[3],他所指的“迅速”是在三個月內就可以擁有核武器,這已經接近全世界國家總數的1/6了。而且具有生產核武器能力的國家恐怕最少應該在50個國家以上,巴拉迪同時指出聯合國每年的1.5億美元用於防止核子武器擴散的開銷費用,根本不能有效阻止現在越來越多的國家通过擁有大規模殺傷性武器來實現自衛的潮流,核武器也可能會流入恐怖主義組織的手中。

發展史[编辑]

瀝青鈾礦(圖左)是最常用來提取的礦石。自然界中的鈾以三種同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%),其中只有鈾-235能夠進行核分裂,是核子武器的重要材料。另一種核武器材料(圖右)可以經由對鈾-238的加工取得。圖右是電解法精煉的武器級鈽環狀物。環狀物重5.3公斤,直徑約11公分,足夠製作一枚核彈。它的形狀有助於維繫臨界安全。

早期[编辑]

1939年4月2日,德国物理学家乔格·朱斯威廉·汉勒提出了将核能用在军事领域的可能性。[4]但由於當時納粹德國核子研究計畫的主持人海森堡錯誤的實驗方向與發展,令希特勒認為開發核武器的費用將會過於龐大,因此最終放棄了核武器的開發。8月2日,阿尔伯特·爱因斯坦在信(愛因斯坦-西拉德信,作者为物理学家利奧·西拉德)中签下名字,希望递交至时任美国总统富兰克林·德拉诺·罗斯福处,建议对方为核裂变武器提供研发资金,因为当时的納粹德國可能也在这方面进行研究。[5]10月11日,经济学家亚历山大·萨赫斯会面美国总统罗斯福,并递交了愛因斯坦-西拉德信。罗斯福批准设立铀顾问团[6]10月21日:铀顾问团首次会面,会议由國家標準技術研究所莱曼·布里格斯主持召开。顾问团划出6000美元的预算来做中子实验。[7]

1940年3月,英国伯明翰大学学者奥托·弗里施魯道夫·佩爾斯撰写了弗里施-佩尔斯备忘录,计算出原子弹的爆炸可能只需要1英磅(0.45公斤)的浓缩铀。该备忘录先是到了澳大利亚物理学家马克·奥利芬特手中,后者将其转交给了英国化学家亨利·蒂泽德[8]3月2日,美国物理学家约翰·邓宁位于哥伦比亚大学的团队证实了尼尔斯·玻尔的猜想——慢中子可引发鈾-235的核裂变。[9]4月10日,蒂泽德在英国设立了穆德委员会,用于进行原子弹的可行性研究。[10]5月21日,乔治·基斯佳科夫斯基提出使用氣體擴散法分离同位素[11]6月12日,罗斯福设立了美国国防部科研委员会,由万尼瓦尔·布什领导,并将铀顾问团并入其中。[12]同年日本也開始了自己的核武研發,时任日本陆军航空技术研究所所长的安田武雄中将命令部下铃木辰三郎开始进行制造原子弹的可能性分析。铃木辰三郎在得到东京帝国大学物理学教授嵯峨根辽吉的指导下,提交了以“原子弹制造的可能”的研究报告。1941年5月,理化学研究所所长、东京物理学校(东京理科大学前身)校长的大河内正敏提交了“铀炸弹制造的可能性”的报告。同年6月,物理學家仁科芳雄開始思考原子彈實物化的可能性。[13]

曼哈頓項目中的田納西州橡樹嶺的Y-12工廠內的電磁型同位素分離器質譜儀,這種機器被用於的濃縮。1945年8月6日被美軍投放於日本廣島的「小男孩原子彈」就使用了這些濃縮鈾。第二次世界大戰後,鈾的濃縮不再使用電磁分離法,而是採用一種更為高效的氣體擴散法

1941年2月25日,美国加利福尼亞大學柏克萊分校学者格倫·西奧多·西博格阿瑟·华尔确定发现了元素。[14]5月17日,阿瑟·康普顿美国国家科学院撰写的报告公开发表,指出研发军用核能源带来的的若干好处。[15]6月28日,罗斯福签署第8807号行政命令,设立科学研究与开发办公室,交由万尼瓦尔·布什管理。[16]科学研究与开发办公室合并了国防部科研委员会和铀顾问团。詹姆斯·布莱恩特·科南特接任布什成为科学研究与开发办公室的新总管。[17]7月2日,穆德委员会任命詹姆斯·查德威克撰写原子弹的设计与预算报告的第二稿(也是最终稿)。[18]7月15日,穆德委员会分发了制弹的技术细节、预算的最终稿。万尼瓦尔·布什接获报告后,决定先等待报告官方版本出来后再进行下一步的行动。[19]9月3日,英国参谋长委员会批准了核武器计划。[20]10月3日,穆德委员会官方报告(查德威克撰写)送到了布什手中。[21]10月9日,布什将穆德委员会的报告呈交给罗斯福,后者在了解相关科学细节后准许了研发计划。罗斯福让布什起草外交函,以方便英美双方的高层接洽。[22]12月6日,布什组织了场会议来协调整个研发计划。该计划由康普顿主导,哈羅德·尤里负责研究使用气体扩散法来浓缩铀,欧内斯特·劳伦斯则负责研究电磁分离法(该方法最后造出了电磁型同位素分离器)。[23][24]康普顿将钚容器呈给了布什和科南特。[25]12月18日,科学研究与开发办公室S-1分部的首次会议。该部门专攻核武器制造。[26]

1942年1月19日,罗斯福正式批准原子弹计划。[27]1月24日,康普顿决定将钚相关的科研工作放在美国芝加哥大学集中进行。[28]2月19日,加拿大和英国协商设立蒙特利尔实验室,用作英、加两国在核技术方面的协作(尤其是制钚)。[29]7月-9月,罗伯特·奥本海默在加利福尼亞大學柏克萊分校召开夏季会议,会议研讨了核裂变武器的设计。愛德華·泰勒提出了氢弹的构想,在会议中重点讨论。[30]12月2日:在恩里科·费米的设计、主导研发下,世界上首个核反应堆工程——芝加哥1号堆在芝加哥大学取得了突破性进展。该反应堆在建造后短短一个月成功实现了自持反应。[31]

气体扩散工厂K-25內的气体扩散池,使用了氣體擴散法來進行鈾濃縮

1943年2月18日,Y-12国家安全大楼动工。Y-12是橡树岭的一个大型电磁分离工厂,用来浓缩铀。[32]6月2日,气体扩散工厂K-25动工。[33]7月10日,第一份钚样品抵达洛斯阿拉莫斯。[34]8月13日,枪式裂变武器的首次投下试验,位于达尔格伦演习场英语Naval Surface Warfare Center Dahlgren Division,负责人诺曼·拉姆齐[35]肯尼斯·尼科尔斯取代马歇尔成为曼哈顿工程区的总工程师。[36]他上任后的首批任务之一是将曼哈顿工程区总部迁移至橡树岭(但工程区并未因此更名)。[37]10月10日,汉福德区首个核反应堆动工。[38]11月4日,橡树岭的X-10石墨反应堆达到临界状态。[39]同年東條英機下達研究原子彈的命令,代號為「仁計畫」。仁科芳雄招集了他的老師,長岡半太郎和將在戰後獲得諾貝爾物理獎朝永振一郎理化学研究所(RIKEN)人員身份投入海軍核子技術研發。除此之外,他們還聘請東京帝國大學的物理學教授協助分析。不過到了1943年後,當仁科芳雄告訴海軍「理論上或許可行,但可能連美國也無法成功將原子彈實用於戰爭」時,海軍便失去了興趣。而仁科芳雄只好再找其他單位來繼續研究計畫。日本帝國海軍雖然曾放棄仁科芳雄的核子計畫,不過他們不甘陸軍專美於前,隨後又招集另一位物理學家,前台北帝國大學(今國立臺灣大學)教授荒勝文策進行研究。他的團隊包含日本第一位獲得諾貝爾物理學獎湯川秀樹。荒勝文策設計出一款超速離心機來分離鈾235,但直到日本投降後都尚未生產。荒勝文策設計的原子彈藍圖雖然可行,也因為鈾不夠而在投降時尚未完成。[40][41]

1944年1月11日,洛斯阿拉莫斯理论部门成立了特别小组来研发内爆式核武器,负责人愛德華·泰勒[42]3月11日,橡树岭Beta电磁型同位素分离器启动。[43]4月5日,在洛斯阿拉莫斯,埃米利奥·塞格雷收到了橡树岭核反应堆增殖的首份钚样品。十天后,他发现自发性裂变的速率过高,无法应用在枪式裂变武器上(因为钚-240混入到了钚-239中的缘故)。[44]5月9日,在洛斯阿拉莫斯,世界上第三个核反应堆——LOPO——达到临界状态。该反应堆是世上首个溶液堆,也是首个以濃縮鈾作为燃料的反应堆。[45]7月4日,奥本海默向洛斯阿拉莫斯实验室的研究人员阐释了塞格雷的发现,并终止了枪式钚核武器“瘦子”的研发。设计内爆式的核武器(“胖子”)从此成了实验室的重中之重。枪式铀核武器(“小男孩”)的研发计划重启。[46]9月22日,洛斯阿拉莫斯实验室使用放射源进行首轮放射性镧测试[47]9月26日,世界上首个全尺寸反应堆——B反应堆——在汉福德区启用。[48]11月下旬,美国阿尔索斯任务首席科学家塞缪尔·古德斯米特下定论称,依照斯特拉斯堡中发现的有关文档,德国人并没有在核武器、核反应堆的研发计划中取得有效的进展,甚至整个研发计划都没有给予高优先级。[49]12月14日,在一次放射性镧测试中发现了可实现压缩度的确凿证据。[50]

1945年11月,盟軍最高司令部拆除日本一座用於核武研發的加速器設施,該設施由日本物理學家荒勝文策主持建造。荒勝文策在1943年時已設計出一款超速離心機來分離鈾235,但一直沒有投產。他也設計出可行的原子彈藍圖,但因為鈾不夠而在投降時尚未完成。

1945年1月7日,首次使用电桥式电雷管進行放射性镧测试。[50]1月20日,K-25工厂进行到第一阶段,使用了六氟化铀气体。[51]同年2月,一小群日本科學家已經成功分離出初步的鈾235複合材料,但兩個月後美軍空襲東京毀掉大部份的設備,讓鈾堆和重水的生產陷入停頓。另外,日本的原子彈計畫也飽受鈾礦短缺的困擾。日本軍方在本土、中國韓國緬甸等地搜刮鈾礦,同時要求納粹德國送來鈾235的氧化物來製作原子弹,但因納粹德國戰敗而無法送達。4月22日,阿尔索斯任务在德国海格洛赫发现了德国的实验性核反应堆。[52]5月7日,美国田纳西州阿拉莫戈多进行了一场100吨炸药的试爆。[50]7月16日,在阿拉莫戈多,曼哈顿计划引爆了人类历史上的首次核爆炸——三位一体核试——使用了一种内爆式钚核武器(被称为“小工具”);[53]印第安纳波利斯号重型巡洋舰前往天宁岛,舰上载有核武器。[54]7月19日,奥本海默建议格罗夫斯放弃研发枪式裂变武器,把铀-235用来制作复合堆芯。[55]7月24日,美国总统哈里·S·杜鲁门向苏联领袖约瑟夫·维萨里奥诺维奇·斯大林透露消息称美国有核武器(但苏方早已透过谍报活动得知此事)。[56]7月26日,美、英、中三国联署的《波茨坦公告》发布,威胁会将日本“迅速完全毁灭”。[57][58]7月27日,日本政府决定对《波茨坦公告》“默杀”(即不予置评),被盟军视为日本拒绝投降。[59]8月6日,艾諾拉·蓋號B-29型轰炸机小男孩原子彈(枪式铀-235弹)投在了是次行动的主要目标城市广岛市。[60]8月9日,博克斯卡号B-29型轰炸机将胖子原子彈(内爆式钚弹)投在了是次行动的第二目标城市长崎市,因为当日主要目标城市小仓市当天天气状况恶劣。[61]8月12日,《史迈斯报告》公开发表,首次介绍了原子弹的有关技术背景。[62]在日本投降前不久,日本已經可以每個月從韓國九州的電解氨工廠生產二十公克的重水重水反應堆可以把鈾238轉化成為可製作核武的。由野口君創辦的朝鮮水利電力公司在二次大戰結束前幾年一直秘密生產重水,其規模可與德國挪威的重水工廠比擬。甚至有歷史學家指出,他們打算在1945年8月開始進行測試,不過真相隨著蘇聯的佔領而永遠消失。

1946年2月,叛逃苏联的伊格尔·古琴科泄露了有关在加拿大的苏联间谍团伙的信息。该消息被公之于众,引发了公众对“原子间谍”的担忧,导致美国国会对于战后核能法律法规的讨论趋向保守化。[63]7月1日,比基尼环礁进行了代号“Able”的核试。该试验是十字路口行动的一部分。[64]7月25日,比基尼环礁进行了代号“Baker”的核试。[64]8月1日,杜鲁门批准了《1946年原子能法案》(也称《麦克马洪法案》)。[65]

冷戰[编辑]

冷戰初期的1948年,前蘇聯的鈾-235工廠在車里雅賓斯克附近建成[66]。在1949年8月29日,蘇聯哈薩克塞米巴拉金斯克試驗場第一次試爆原子彈,原子彈的名稱為「RDS-1」[66]。RDS-1是庫爾恰托夫研究所英语Kurchatov Institute所構思的,設計與美國的胖子原子彈幾乎是一樣的,引起美國對其研發團隊內存在蘇聯「原子間諜」的猜疑。當時官方稱其為實驗室第二號,但自1946年4月起內部文件將它定性為與辦公室或基地一樣的事物。RDS-1爆炸產生了2.2万噸的威力。與胖子原子彈一樣,RDS-1是一種內爆型核武器,核心是固體的

常春藤麥克」氫彈裝罝外壳(左邊的圓罐物),连接着仪器和低温设备,20尺高的炸彈有一個低温杜瓦瓶,空間足夠裝載160公斤的液態。「常春藤麥克」的液態氘核融合反應由杜瓦瓶外的一枚原子彈爆炸所產生的高温高壓激發。

蘇聯成功研制出原子彈後,在1950年1月,美国总统杜鲁门决定研制氢弹。氢弹的研究工作由愛德華·泰勒领导。1951年泰勒在佔有了烏拉姆的一個創新構想,並將其開發成第一個可行的爆炸當量達百萬噸級氫彈設計。烏拉姆及泰勒的貢獻就成了後來的泰勒-烏拉姆設計方案。利用原子弹促进爆炸时产生的高温,使氘发生核融合反应。1951年5月,氢弹原理试验准备工作就序,试验弹代号「乔治」,在太平洋上的恩尼威托克岛试验场进行。极其笨重(达62吨)的试验装置放在60余米的钢架上,装置以液态氘作为核融合原料,并有冷却系统使氘处于极低温。试验证明爆炸威力大大超过原子弹[67]。美國在1952年11月1日於太平洋的埃內韋塔克環礁伊魯吉拉伯島引爆「常春藤麥克」氢弹试验装置。該裝置是第一個通過測試的泰勒-烏拉姆方案核裝置。该装置高6米,直径为1.8米,重达65吨,看上去像个大暖瓶,爆炸威力达1000万吨TNT当量。相当于广岛型原子弹的500倍。「常春藤麥克」体积比一辆载重汽车还大,它必须装有笨重的制冷系统,这样的装置飞机导弹都无法运载,没有什么实战价值。

1953年8月12日,前蘇聯塞米巴拉金斯克試驗場成功試驗氫彈,名稱為「RDS-6s」,當量為四十萬噸TNT。其方案是采用的一种同位素锂─6和氘的化合物──氘化锂作核燃料。氘化锂是固体,不需冷却压缩,制作成本低、体积小、重量轻、便于运载。这种氢弹称为「乾式」氢弹,所以蘇聯是第一個成功把氫彈實用化的國家。

1954年3月1日,美國在城堡行動中引爆代號「Bravo」的氫彈裝罝,是美國歷來引爆過的測試用核裝罝中威力最大的,當量為一千五百萬噸。「Bravo」氫彈內的核融合材料為30%氘化锂-6和70%氘化锂-7的混合物,而由於當時美國研究人員並不知道在高温高壓下,本來不能進行核子融合的氘化锂-7會掉下一顆中子成為氘化锂-6去進行核子融合,這些氘化锂-7便成為額外的炸弹燃料,因此「Bravo」氫彈的爆炸威力超出了五百萬噸的預期當量。 氘化锂-6由700攝氏度高温燃燒鋰-6氘氣(重氫)提取,氘氣則由电解重水而來。

在1954年3月1日,美國在城堡行動中在比基尼岛试验代號「Bravo」的氫彈,這是美国的第一颗实用型氢弹,並是美國歷來引爆過的測試彈頭中威力最大的,當量為一千五百萬噸TNT[68]。英國在1952年於澳洲蒙泰貝洛群島進行英國首次核子試爆。幾位關鍵英國科學家曾在曼哈頓計劃中工作,他們返回英國後在英國原子彈計畫中工作,所以颶風行動武器類似胖子(長崎核爆)核子武器,雖然1946年的麥克馬洪原子能法防止英國使用美國的設計數據。颶風行動採用空心設計,不同於三位一體測試。這種設計增加炸彈當量為30千噸,儘管實際當量接近25千噸。

1955年,沙哈諾夫留在薩羅夫主導研發並設計製造出蘇聯首枚百萬噸級氫彈。其後前蘇聯於1961年10月30日在新地島引爆一枚氫彈,稱為沙皇炸彈,是人類至今所引爆過所有種類的炸彈中,體積、重量和威力最強大的炸彈。當量為五千萬噸TNT,其威力是第二次世界大戰投擲於廣島和長崎的「小男孩」原子彈的3,800倍、「胖子」原子彈的2,300倍。其引爆時的火球直徑接近8公里,相當於珠穆朗瑪峰的高度,火球最高處離地面10.5公里,差不多達到了投放炸彈的Tu-95轟炸機的飛行高度。英国於1957年5月15日拥有氢弹。法国在美国曼哈頓計劃協助下核技術有長足進展,在1960年2月13日阿尔及利亚战争期间,法国阿尔及利亚撒哈拉大沙漠拉甘,完成法國第一个原子弹核试验蓝色跳鼠,当量為7万吨。

1964年10月16日,中華人民共和國核武研發團隊在罗布泊成功試爆中國第一颗原子弹。並在3年後的6月17日第六次核試驗中引爆了中國第一颗的氫彈。

在1959年,中蘇關係急劇惡化。1959年6月13日,中国人民解放军总参谋部正式批准核试验基地建设。於1964年10月16日,在罗布泊成功試爆中國第一颗原子弹。1966年10月27日,中國成功试验导弹核武器。于敏率領的研製團隊于1966年12月28日成功地进行氢弹原理试验,当量30万吨。中華人民共和國在1967年6月17日第六次核試驗中成功试爆氢弹,引爆的氫彈當量331萬噸。

古巴導彈危機後,公眾開始重視核武器帶來的後果,於是美國、英國和蘇聯便開始積極進行協商制定《核不擴散條約》相關細節的討論,到1968年美國、英國和蘇聯簽署《核不擴散條約》,而在當時與美國和蘇聯兩個同時都處於對立狀態下的中華人民共和國並沒有簽署此條約。

1980年10月16日,中華人民共和國最后一次大气核爆炸。1986年3月21日,国际和平年的春季,中華人民共和國政府正式宣布不再进行大气层核试验

1992年,中国簽署《核不擴散條約》。同年法國也簽署《核不擴散條約》。[69]1996年7月29日,成功进行了一次地底核试验,[70]中華人民共和國政府声明从7月30日起开始暂停核试验。1996年,中国大陸签署《全面禁止核试验条约》。

在全世界大多數國家得到了簽署之後,美國、俄羅斯、英國、中國、法國等核子大國都放慢核武器的發展腳步,並且宣布暫停本國的所有核試驗,但北韓、印度、巴基斯坦、伊朗、敘利亞等國家卻不排除發展核武器的可能。朝鮮在2003年退出了核不擴散條約[71] 並且相繼在2006、2009、2013和2016年四次成功進行了核試驗。[72]

設計和製造[编辑]

1984年,美国俄亥俄州派克顿的气体离心机级联,用于生产浓缩铀。每台离心机的高度约为12米。如今使用的常规离心机体积更小,高度不到5米。

設計核武器需要考慮物理上、化學上以及工程上的各種因素。核武器基本上可以分為纯裂变武器、聚变增强裂变武器、和二阶段热核武器三種類型。而這三種類型核武器爆炸時的主要能量來源在一般情況下都是核裂变,而不是核融合。

試驗[编辑]

丝兰平地上的弹坑,美國內華達試驗場

核試驗主要目的是鉴定核爆炸装置的威力及其他性能,验证理论计算和结构设计是否合理,为改进核武器设计或定型生产提供依据;在核爆炸环境下研究核爆炸现象学和各种杀伤破坏因素的变化规律;研究核爆炸的和平利用等。1996年9月全面禁止核试验条约联合国大会通过后,仅印度巴基斯坦朝鲜三国进行过核试验。

據統計,地球上已記錄到約2095次核試驗。美國1093次,其中200次為大氣層核試驗(72次地面、11次高空、81次中空、36次水面)、5次水下、888次地下核試驗。蘇聯進行715次核試驗,其中大氣層212次、水下3次、地下核試驗500次。法188次、中45次、英43次、印6次、巴基斯坦6次、朝鮮6次。

引爆前的安全性[编辑]

由于低当量的核弹头也拥有毁灭性的破坏能力,武器设计人员永远需要考虑到需要使用某种方式和操作流程以避免偶然地爆炸。核子武器在引爆以前必須維持在次臨界。以鈾核彈為例,可以把鈾分成數大塊,每塊質量維持在臨界以下。引爆時把鈾塊迅速結合。投擲在廣島的「小男孩」原子彈是把一小塊的鈾透過鎗管射向另一大塊鈾上,造成足夠的質量。這種設計稱為「鎗式」。鈽核彈不能以這種方法引爆。第一枚鈽原子彈「胖子」的鈽是造成一個在次臨界以下的中空球狀。引爆時使用包圍在四周的炸藥把鈽擠壓,增加密度及減少空間,造成即發臨界。這種設計稱為「內爆式」。

另外在研發期間也有其他安全問題需要注意,曼哈頓計劃期間的1944年9月2日,两名化学家便因被高腐蚀性氢氟酸溅到而死亡,阿诺德·克拉米什重伤濒死。当时他们正在清理一个浓缩铀的装置,该装置是位于费城海军船坞的热泳试验工厂的一部分。[73]是次事件是曼哈顿计划首次有人员伤亡的事故。[74]

種類[编辑]

主要包括核分裂武器(第一代核武,通常稱為原子彈)和熱核武器(亦稱為氫彈,分為兩級及三級式)。亦有些還在武器内部放入具有感生放射的輕元素,以增大輻射強度擴散汙染,或加強中子放射以殺傷人員(如中子彈)。

除此以外,核武器還可以根據用途而細分為戰略核武器及戰術核武器,前者是一般意義上的核武器範疇,為大當量的核武器和遠射程,後者則屬於小當量和近射程。其中,後者可用於戰爭前線。戰術核武器的概念以及發展相對戰略核武器為遲緩,是在第二次世界大戰以後多年才逐步形成的,而戰術核武器需要對核能技術的要求亦較高以及複雜,其前提是要擁有戰略核武器。

核分裂武器(原子彈)[编辑]

裂變核武透過核分裂釋放能量。重核子如中子衝擊下發生核分裂反應,分裂成為較輕的核子,同時釋放更多的中子,造成連鎖反應。傳統上裂變核武稱為原子彈。和中子彈的用途一般,現在純粹的核裂變武器,通常僅用來制造低當量和小型的戰術核武器,如大衛克羅無後座力砲等。

大部分的裂變核武是使用化學炸藥,把在臨界質量以下的-235或擠壓成超越臨界質量的一塊,然後在中子照射下產生不受控的連鎖反應,釋放大量能量。起爆的方式可分為鎗式和內爆式。

美國第一枚投擲在日本廣島的核武小男孩為鎗式起爆的鈾彈。第二枚投擲在長崎的胖子為內爆式起爆的鈈彈。每一磅的鈾-235分裂時可放出大約3,700百億焦耳的能量,約為82太焦耳/公斤(TJ/kg)。一般的連鎖反應只維持一微秒(μs),功率約為82艾瓦/公斤(EW/kg),或每原子200兆電子伏/秒。

加強型核分裂武器[编辑]

雖然名為「原子彈」實和中子彈同為為廣義氫彈一種,指雖然像典型氫彈般有聚變材料作為核爆增強劑,但聚變的主要作用是提供足夠中子,給裂變材料的分裂反應更為完全,意味所需的聚變材料較少,所以較一般氫彈小巧。本類的原意是作為氫彈的技術驗證,後來通常此設計是用於小型的戰略級核彈和可調節威力的核彈,因威力雖然遜於典型氫彈卻勝在較緊湊。

熱核武器(氫彈)[编辑]

聚變核武透過核聚變釋放能量。輕核子如結合成較重的元素,同時釋放大量的能量。使用聚變過程的武器亦常被稱為氫彈,因為氫是聚變的常用材料。聚變核武有時亦稱熱核武器,因為它們的連鎖反應需要更高的NANI溫度啟動。一般的氫彈會先引爆作為前級的裂變彈,造成足夠的溫度及壓力,之後的後級聚變才會開始。後級可以無限制地連鎖起來,製成比普通裂變強力很多的核武。目前只有美、俄、英、中、法五國承認擁有使用與生產氫彈的能力。印度在1998年5月進行的核試驗中試爆了帶熱核裝置的核彈,目前可能擁有氫彈。朝鮮亦在2016年1月6日宣佈氫彈試爆成功,但未獲承認。2017年9月3日,朝鮮可能成功製造出氫彈核試驗

現代的核武通常結合兩種核反應:聚變需要先以裂變產生足夠的溫度及壓力啟動;同時裂變在聚變開始後效率會得到提高。故此部分核武是三級設計:最先在外圍第一級先用核裂變,造成聚變條件。中部第二級聚變發生後,再引起彈頭中心的第三級的第二次裂變反應,造成裂-聚-裂反應的三級核彈,是現在最大破壞性的武器。此核彈稱為三相彈、氫鈾彈、三級效應超級炸彈或骯臟的氫彈。

中子彈[编辑]

中子彈是小型的熱核武器。武器內的X射線反射鏡及彈殼以製成,讓聚變中產生的中子離開彈體。高能量的中子流比其他放射更具穿透能力。一般能阻隔伽傌射線的物料要很厚(如一公尺厚的鋼板)才可以抵擋中子流,所以不適用機動兵器,唯一可以反射的又有毒。因為只有水和電解質才能吸收中子,而生物中含大量水份,所以中子流對生物產生的傷害比伽傌射線更大。原先製造中子彈的目的,是希望可以殺人而不毀物(被戲稱為「業主炸彈」或「房貸積欠款炸彈」:能殺死屋內的人,但房子無損),而理論上最有效的是對付坦克,因為當時前蘇聯的坦克不只是數量遠比美國和全西歐總和還多,更大部分已經改裝了防止吸入放射塵空氣過濾設備,故美國放棄了以放射塵而是中子流作為對蘇軍的主要威脅手段。中子彈所產生的熱能及衝擊波被故意減低,而中子流則被加強。但中子彈的熱及火仍然會對建築物造成嚴重的損毀。所謂「殺人不毀物」只是相對其他熱核武器。中子彈所加強的放射,只限於引爆的一刻,與感生放射核彈的長期放射有所不同。特徵是致命的放射線的範圍對於人來說比爆風和熱光大,而在肉眼看來各種效應非常像小型的原子彈,難以分別離爆心的安全距離,所以對人來說非常危險的。其實蘇聯已經發明了一種坦克裝備的複合反射層,能大大減輕中子流的效果,但因為不可能全車都有同等的厚度,所以中子彈仍然有很大的威脅性。

衝擊波彈[编辑]

它是一種小型氫彈,採用了慢化吸收中子技術,減少中子活化,削弱其爆炸後輻射的作用,部隊可以迅速進入爆炸區投入戰鬥,是一種戰術核彈。

其他[编辑]

髒彈[编辑]

髒彈現在是作為一個術語代指具有放射性、非核武器的武器。它裝填著放射性材料,爆炸的時候將放射性物質拋射散布,造成相當於核放射性塵埃的汙染,造成災難性的生態破壞。自九一一事件之後,西方政府最主要擔心的一個就是恐怖分子可能利用髒彈襲擊人口稠密區,作為區域封鎖武器,就像其他更高級、更復雜的放射性武器,可以將這個地區在以後的數年或十幾年中,退化為不適合人類居住的放射性地區。然而大多數的分析人士認為,骯髒彈的作用更主要體現在心理方面,而它所造成的汙染雖然可以以有效的凈化措施來治理,但所需要付出很大的代價。

鈷彈[编辑]

鈷彈利用感生放射性的核武,原理是在彈殼使用元素。如下反應式聚變釋放的中子會令鈷變成鈷60外加強烈輻射。[75]

59
27
Co
+ n → 60
27
Co
60
28
Ni
+ e + 伽玛射線.

約五年內在當地釋放強烈伽玛射線,除了使用鈷外,亦可使用造成維持數天汙染,或用造成維持數月的汙染,戰術上讓人無法進入該地區,並造成民眾恐慌,已知的核武國沒有承認有生產鈷核彈。[76]

伽瑪射線彈[编辑]

原理類似一座無防護層的裂變反應堆,所以不會發生一般意義上的爆炸,只放出大量伽瑪射線;儘管各種效應不大,也不會使人立刻死去,雖然能造成持久的放射線,但不一定會汙染土地,能有效迫使敵人離開。

核電磁脈衝彈[编辑]

經過改造的核彈,減弱了衝擊波與核輻射效應,增強了電磁脈沖效應(利用康普頓散射光電效應等原理),利用在大氣層以上的核爆炸,產生大量定向或不定向的強電磁脈衝,基本上對人體無害,但可使電器(或金屬)急速升溫燒毀。

當量比較[编辑]

以下是核武器當量和傳統炸藥當量的比較。常用同等爆炸威力的三硝基甲苯(TNT)的質量來衡量核武器的威力

代碼 / 名稱 國家 類型 當量(千噸) 備註
W54  美國 核分裂無後座力砲砲彈 0.02 可變當量。質量僅23kg,美國投放的最輕量級的核彈
Mark 1 (小男孩)  美國 核分裂自由落體炸彈 13 槍式鈾235核分裂彈
Mark 3 (胖子)  美國 核分裂自由落體炸彈 22 內爆式鈽239核分裂彈
596(邱小姐)  中华人民共和国 核分裂自由落體炸彈 22
Mark 90  美國 核分裂深水炸彈 32 內爆式鈽239核分裂彈
Mk 101 Lulu  美國 加强核分裂深水炸彈 23
W76-0  美國 熱核导弹彈頭 100 8枚裝備在三叉戟一型飛彈上
B61  美國 熱核戰術炸彈 340 可變當量
W87  美國 熱核导弹弹头 300 10枚裝備在和平衛士飛彈上
W88  美國 熱核导弹弹头 475 8枚裝備在三叉戟II型彈道飛彈
639  中华人民共和国 熱核自由落體炸彈 3310
Mark 21  美國 熱核自由落體炸彈 15000 美國最大當量的測試彈頭,設計為5000千噸當量,因技術出錯而超出預期當量。
B41  美國 熱核自由落體炸彈 25000 美國裝備部隊的最大當量彈頭,由B-36攜帶,1957年退役
AN602  蘇聯 熱核自由落體炸彈 50000 苏联最大當量的測試彈頭

能量釋放的形式[编辑]

核武器能量分布
普通 中子弹
冲击波 50% 40%
热效应 35% 25%
核辐射 5% 30%
残留辐射 10% 5%

一個核子武器的能量主要通过五種形式放射出來:衝擊波熱輻射原始粒子輻射核電磁脈衝殘留放射性(放射性塵埃)能量以何種形式被釋放還要仰賴武器的設計以及爆炸時的環境。放射性塵埃的能量釋放是持續的,而其他四種都是立即的短暫的爆發。

這最初四種形式釋放的能量根據炸彈的尺寸而有區別。熱輻射形式相對於距離衰減最緩慢,所以越是大當量的核彈,這種形式就越顯得重要。粒子輻射被大氣強烈吸收,所以他只在小威力的爆炸中體現出重要性。而沖擊波效應的衰減,是介於上述二者之間的。 在爆發的一瞬間,核裝藥在一微秒內達到平衡溫度。在這一時刻,大約75%的能量都以熱輻射形式,特別是以軟X射線的形式存在,而其他的殘余能量則都表現為武器碎片的動能。接下來,這些軟X射線和碎片怎樣與周圍媒質作用就成為沖擊波和光以及粒子之間怎樣分攤能量的決定因素。總的來說,若是在爆心周圍物質很密集,那麽它們將非常有效的吸收能量,沖擊波的強度將會被加強。 當爆發在接近海平面的大氣中進行時,絕大多數的軟X射線將在數英尺內被吸收。一些能量轉而形成紫外線可見光和紅外波段的輻射,但更多的被用來加熱空氣,形成火球。 在高空的爆發中,由於空氣密度的降低,軟X射線更趨向於行走更長的距離,在它們終究被吸收後,只有更少量的能量用來推動沖擊波(海平面的50%或更少),而剩余的都轉化為其他形式的熱輻射。

沖擊波[编辑]

核彈的主要的破壞力來自於沖擊波效應。絕大多數的建築(除特別加固和抗沖擊結構的工事),將受到致命的摧毀。沖擊波的速度將超過超音速的傳播,而他肆虐的範圍會隨著核武器當量的增加而增加。兩種相似又不同的現象將隨沖擊波的到來而產生:

  • 靜態超壓:沖擊波帶來的壓強急速升高,任何給定點的靜態超壓正比於沖擊波中的空氣密度;
  • 動態壓強:即是被形成沖擊波的疾風拉扯的效應,疾風會推動、搖晃和撕裂周圍的物體。

大多數核武器空爆造成的破壞就是由靜態超壓和動態的疾風合成的效果。較長時間的超壓拉動建築結構使其變得脆弱,這時吹來的疾風再一舉將其摧毀。壓縮、真空和拉扯效應總共會持續若干秒鐘,或者更長。而這裏的疾風比世界上任何可能出現過的颶風都要更加兇猛。

熱輻射[编辑]

核武器的爆炸會伴隨有大量的電磁波輻射爆發,分布在可見光波段,及紅外的和紫外的波段上。主要的傷害機制是造成灼傷及對肉眼的傷害。在晴朗的天氣下,作用範圍可超過沖擊波。輻射光的能量是如此之強,它可以在沖擊波留下的廢墟中再制造一場大火。而熱輻射所作用的範圍,隨武器當量的增加而顯著地增長。

由於熱輻射線是以直線傳播的,所以任何不透明的物體都可以成為有效的壁壘阻止其傳播。但是,如果空氣中有霧氣,這些小水珠可以散射輻射線使其向四面八方傳播,於是所有的壁壘都會顯著地喪失作用。

當熱輻射線作用於一個物體時,部分的能量會被反射,部分被傳導和轉化掉,而剩下的會被吸收。吸收的比率取決於物體的特性和顏色。一個薄片狀的物體可以將大部分的能量傳導掉,同時淺顏色的物體可以反射許多輻射,它們受到的傷害都會小一些。對輻射線的吸收造成溫度在表面的迅速升高,例如木材、紙張、織物等都會被點燃和烤焦。如果恰好這種物質是不良導體,那麽加熱現象只會在表面產生。

事實上,物質是否被點燃還仰賴於熱輻射持續的長短,物質的厚度和包含的水分。在近距離上,所有的物質都會被加熱蒸發,而在最遠的距離上,只有最容易點燃和最脆弱的物質才會受到傷害。火災並不一定只是熱輻射線產生的,沖擊波造成的混亂氣流,也可能誘發大火。在廣島原爆中,就有一場空前巨大的火災,持續了20分鐘。火焰加熱空氣使其上升,周圍的空氣填補這一真空,造成持續的指向爆心的強風。然而這種現象並不是核爆炸所特有的,在二戰的大轟炸中,大量的燃燒彈或經常發生的森林火災中的烈焰也能造成大風。

電磁脈沖[编辑]

γ射線通过康普頓散射效應電子反沖加速,得到高能的電子。這些電子被地磁場捕捉,在地表以上20到40公裏的高度上產生共振。周期性振動的電子即可產生連續的電磁脈沖(EMP),持續大約1毫秒。下一個持續大約1秒數量級的效應是,大量的長條形的金屬物體(如電纜),在電磁波通過時會像天線一樣工作並產生高壓。這些強大的短暫的高,可以摧毀未經屏蔽保護的電子設備甚至是電線本身。但這種可怕的電磁脈沖對生物的影響人們卻不甚了了。另外灼熱的空氣破壞了電離層,也會使無線電通訊受到影響。

唯一能夠保護電子設備不受脈沖摧毀的措施是將其完全包裹在良導體內,或別的形式的法拉第籠內。當然,對於無線電通訊設備來說這是不可能的,因為它將收不到任何訊號。最大當量的核彈被用來實現大面積的,甚至是洲際範圍的電磁轟炸。

原始粒子輻射[编辑]

核彈空爆中,以最原始的粒子和γ射線形式輻射掉了。裂變彈和聚變彈的中子輻射有很大不同。然而γ輻射的結構,無論是在這類爆炸式的核反應中,還是短半衰期的物質衰變中都是類似的。核反應粒子輻射隨距離衰減快的原因,一個是它們的散布面積正比半徑立方,強度即正比半徑立方的倒數,一個是它們被大氣強烈地吸收和散射。

粒子輻射的結構也與距離有關,在近爆心的地點,中子輻射強於γ輻射,但隨著距離的增加,中子-伽瑪比將減小。最終,中子成分與γ成分相比即可忽略。要注意的是,上述的這些距離,並不隨爆炸當量的增加而有十分顯著的變化。因此,越大當量的爆炸中,原始粒子輻射的效果就越不顯著。在大塊頭的核彈中,譬如大於50kt,沖擊波和熱輻射的威力使得粒子輻射機制相形見絀,以至於被忽略。

輻射塵[编辑]

剩余的放射性物質通过兩種效應造成殺傷力:輻射塵和中子感應機制,剩余粒子放射線從下列物質中產生:

  • 裂變產物。裂變產物是由鈾或鈈在裂變反應中產生的中等質量的同位素。在裂變反應中,實際上產生的產物有超過300種。大多數是放射性的,且半衰期的長短不一,區別很大。短則幾分之一秒,長則在數年內都有致命的放射性。它們衰變的經典機制是釋放β和γ射線。1千噸的當量中,有大約60克的放射性裂變產物。引爆一分鐘之後,裂變產物的放射性等同於3千萬公斤的同時衰變,也就是大約1.1澤它貝可
  • 未裂變的裝藥。裂變物質的利用,在核武器中可謂是很不充分,大量的鈾和鈈在裂變前就被炸得四分五裂。這些核裝藥,以α衰變的形式緩慢地輻射,而它們的重要性也相對較小。
  • 中子感應效應。當一個原子核在中子爆發的時候捕獲了中子,作為一種已知的必然機制,它將變為放射性並在較長的周期內放射β和γ射線。中子爆發作為最原始的核放射線,必將引起殘留的中子感應效應。另外,環境物質,如土壤、空氣和水,也將被感應激發,這取決於它們的化學成分和距爆心的距離。舉例來說,在近爆心的地區,土壤中的礦物質由於中子爆發會變成有致命放射性的同位素。這是由於多種元素具有中子俘獲能力,像這樣的元素,都存在於土壤中且參與了中子感應效應。但這種效應並不重要,因為它只限於很有限的一塊區域內。

在近地面的爆炸中,大量的土壤或水分將被火球加熱蒸發,上升成為放射雲。這些物質凝結後,由於混合了裂變產物和中子感應產物,將變得具有放射性。較大的顆粒將在24小時內沈降到爆心附近(也與風速和天氣有關),而較小的顆粒有可能會在全球大氣系統中漂流數周以至數月。一些當地沈降物覆蓋的面積會遠遠大於熱輻射和沖擊波的範圍,特別是在大量的核爆中。在水面附近的核爆中,輻射塵顆粒將較小,下落的比例將較小,而分布的面積就會比較廣大。大量海水中的鹽和一些水分,可以作為凝結核,引起當地的降雨從而使當地的核沈降大大增加。

全球放射性沈降的生物學破壞作用是由長半衰期的同位素在生物體內的富集主導的。像-90或-137這類元素,通過食物等進入人體。化學上,這些同位素和很像,他們會被誤認為鈣,而被吸收並沈積在骨骼中。這些高放射性的物質將會造成例如像白血病一類的放射性疾病。全球沈降的個體傷害效果毋庸置疑是小於當地的輻射塵。

在普遍的情況下,沖擊波和熱輻射的殺傷將遠大於放射線的傷害。但是,放射線的輻射傷害比沖擊波和熱輻射更加覆雜,人們對它也存在誤解。各式各樣的生物變異將在輻射區內的動物中發生。全身攝入高劑量放射性元素的個體將會立即死亡,其他攝入劑量較少的個體將會茍活,但也會隨後來的並發癥而死去。

投送[编辑]

东风-31洲際彈道飛彈发射车,可搭載核彈頭

戰略核武器常指用來摧毀戰略目標的大當量核武器;戰術核武器是指用於摧毀小型的特定目標(如軍事、通訊或永備工事等目標)的較小的類型。

核武器的基本投放方式有:

  • 轟炸機:早期的核武器太大了,他們只能被B-29等飛機運載和投放,但在1950年代中期,可由戰鬥轟炸機搭載的較小型的核武器被研製出來。這種新型空基的自由落體炸彈運用了多種新技術,包括翻滾轟炸,傘降投擲,臥倒模式,以保證給予載機足夠的逃離時間。
  • 彈道導彈:彈道導彈採用拋射物彈道飛行,通常用於超視距的彈頭投送。機動彈道導彈具有十到上百公裏的射程,洲際彈道導彈潛射彈道飛彈,每顆導彈可攜帶一打彈頭,而每個彈頭的當量下降到數萬到數十萬噸級。這樣一次發射就可威脅多個目標,或對一個目標造成更有效的打擊。
  • 巡航導彈:這種導彈使用噴氣發動機火箭發動機提供動力,以低空巡航的方式飛行,使用自動導航系統(基本上是慣導,但也有GPS導航和雷達中繼制導作為輔助),雖然只是低速和大氣中飛行,但新式巡航導彈以低飛進入普通陸基雷達的盲區所以突防能力比早年的前輩V-1火箭更強。巡航導彈的射程較之彈道導彈要近,且攜載能力也要差一些,當今也沒有服役的多彈頭巡航導彈。導彈可從潛艇、艦船及飛機上發射。

其他可能的投送方式包括榴彈砲的核砲彈、核地雷(藍孔雀)、核深水炸彈、核魚雷、核迫擊砲彈。 50年代,美國研製了用於空中截擊的無控空-空火箭箭載小型核彈頭,裝備於F-106截擊機,但其在1960年代就基本退役,而核深水炸彈也在1990年代退役。可由兩人攜帶的小型戰術核彈也已研製成功,被一些媒體誇張為所謂的手提箱炸彈,它被稱為“特別打擊核武庫”。儘管如此,人們還在追求當量與便攜性的最佳整合,以達到最大的軍事效用。

傳統上一個國家具備戰略轟炸機、陸基核彈道飛彈、彈道飛彈潛艇的三棲投放方式,稱為核三位一體,目前嚴格來看只有美國、俄羅斯。中國、印度有潛力成為下一個具備此能力的國家。

監管和制約[编辑]

不擴散核武器條約》的參加國

  簽約國
  加入條約國
  非簽約國但受其限制

  退出
  非簽約國

在第一顆核武器被發明出來之前,參與馬特蘭計劃的科學家們就針對該種武器的使用持不同看法。[77]在英國,第一次由核裁軍運動組織的奧爾德瑪斯頓遊行於1958年的復活節舉行。根據核裁軍運動組織的統計,幾千名民眾參與了持續4天的遊行,從倫敦的特拉法加廣場一直到靠近伯克希爾的奧爾德瑪斯頓的核武器研究基地,以表達他們對核武器的反對[78]。奧爾德瑪斯頓遊行一直舉辦到20世紀60年代晚期,上萬名民眾參加了為期4天的遊行。1959年,發布在《原子科學家公報》上的一封信成為一場成功停止原子能委員會在離波士頓19公裏的海中傾倒放射性垃圾運動的開始。1962年,鮑林因在阻止核武器大氣實驗和推動“禁止原子彈”運動方面的努力,被授予諾貝爾和平獎。

1963年,許多國家加入限制核武器大氣實驗的《部分禁止核試驗條約》。1968年首次簽署《不擴散核武器條約》。[79]放射性垃圾的議題變得不再那麽重要,反核武運動在數年內逐漸消弱。1980年代,對核武器戰爭的恐懼重新在美國和歐洲興起。

雖然國際社會對核武器的消減作出許多努力,但核武器的威脅始終存在。2000年不擴散條約審議大會上與會代表認為,目前“關於核武器能力應增加更多的透明度,減少核武器對安全政策的作用。”2003年,朝鮮民主主義人民共和國退出《不擴散核武器條約》,引起國際社會關註。[80]

紅十字國際委員會認為,需要“在有關核武器的討論中,重點突出核武器給人類造成的慘痛代價以及國際人道法的基本規則。這就意味著要提醒每個人註意到核武器給人類造成的極大風險,促使人們意識到眼前的機遇,並對那些明顯有助於消除核武器的措施提供支持。”[81]

參考文獻[编辑]

  1. ^ 巴基斯坦科學家卡迪爾汗核擴散案始末
  2. ^ 伊朗革命衛隊稱核武研發成功 俄朝大力協助. [2013-01-12]. (原始内容存档于2013-01-13). 
  3. ^ 巴拉迪:30個國家靠近“核門檻”
  4. ^ Kant 2001.
  5. ^ Rhodes 1986, p. 307.
  6. ^ Hewlett & Anderson 1962, p. 17.
  7. ^ Hewlett & Anderson 1962, p. 20.
  8. ^ Gowing 1964, pp. 40–43.
  9. ^ Rhodes 1986, p. 332.
  10. ^ Hoddeson et al. 1993, p. 18.
  11. ^ Hewlett & Anderson 1962, p. 31.
  12. ^ Zachary 1997, p. 112.
  13. ^ 邹仲苏. 日本理化学研究所:战时日本核计划的承担者. 澎湃新闻. 2016-06-13 [2017-01-01] (中文). 
  14. ^ Rhodes 1986, pp. 383–384.
  15. ^ Hewlett & Anderson 1962, p. 37.
  16. ^ Roosevelt 1941.
  17. ^ Hewlett & Anderson 1962, p. 41.
  18. ^ Gowing 1964, p. 76.
  19. ^ Rhodes 1986, pp. 368–369.
  20. ^ Gowing 1964, p. 106.
  21. ^ Hewlett & Anderson 1962, pp. 43–44.
  22. ^ Hewlett & Anderson 1962, pp. 44–46.
  23. ^ Yergey & Yergey 1997, p. 943–953.
  24. ^ Lawrence and His Laboratory: Episode: The Calutron. www2.lbl.gov. [2019-07-22]. 
  25. ^ Rhodes 1986, pp. 388–389.
  26. ^ Hewlett & Anderson 1962, p. 53.
  27. ^ Hewlett & Anderson 1962, p. 49.
  28. ^ Rhodes 1986, p. 399.
  29. ^ Laurence, George C. Early Years Of Nuclear Energy Research In Canada (PDF). IEEE. [2019-10-08]. 
  30. ^ Hoddeson et al. 1993, pp. 42–47.
  31. ^ Hewlett & Anderson 1962, p. 112.
  32. ^ Hewlett & Anderson 1962, p. 152.
  33. ^ Hewlett & Anderson 1962, p. 130.
  34. ^ Hoddeson et al. 1993, p. 79.
  35. ^ Hoddeson et al. 1993, p. 380.
  36. ^ Nichols 1987, p. 101.
  37. ^ Jones 1985, p. 88.
  38. ^ Rhodes 1986, p. 499.
  39. ^ Hewlett & Anderson 1962, p. 211.
  40. ^ Francis Pike. Hirohito's War: The Pacific War, 1941-1945. Bloomsbury Publishing. 2016-09-08: 1664. ISBN 978-1-350-02122-8. (英文)
  41. ^ Jake Adelstein. New evidence of Japan's effort to build atom bomb at the end of WWII. Los Angeles Times. 2015-08-05. (英文)
  42. ^ Hoddeson et al. 1993, p. 157.
  43. ^ Hewlett & Anderson 1962, p. 164.
  44. ^ Hoddeson et al. 1993, p. 238.
  45. ^ Hoddeson et al. 1993, p. 202.
  46. ^ Hoddeson et al. 1993, p. 240.
  47. ^ Hoddeson et al. 1993, p. 269.
  48. ^ Manhattan Project B Reactor: World's first full-scale nuclear reactor, HNF-41115, Rev. 0, 美国能源部, 2009-05 
  49. ^ Goudsmit 1947, pp. 69–79.
  50. ^ 50.0 50.1 50.2 Hoddeson et al. 1993, p. 271.
  51. ^ Hewlett & Anderson 1962, p. 300.
  52. ^ Rhodes 1986, p. 609.
  53. ^ Williams 1960, p. 550.
  54. ^ Rhodes 1986, p. 670.
  55. ^ Hoddeson et al. 1993, p. 377.
  56. ^ Rhodes 1986, p. 690.
  57. ^ Rhodes 1986, p. 692.
  58. ^ 《波茨坦公告》全文 (中英文) 美、英、中促令日本投降之最後通牒 (PDF). capany.org. 1945-07-26 [2019-08-23]. (原始内容 (PDF)存档于2019-02-14). 
  59. ^ Kawai 1950.
  60. ^ Jones 1985, pp. 536–538.
  61. ^ Jones 1985, pp. 538–541.
  62. ^ Jones 1985, p. 561.
  63. ^ Hewlett & Anderson 1962, pp. 480–481.
  64. ^ 64.0 64.1 Hewlett & Anderson 1962, pp. 580–581.
  65. ^ Jones 1985, p. 596.
  66. ^ 66.0 66.1 (英文)Peslyak, Alexander. Russia: building a nuclear deterrent for the sake of peace (60th anniversary of the first Soviet atomic test). RIA Novosti. August 31, 2009 [2010-04-05]. 
  67. ^ CCTV-军事频道:氢弹. www.cctv.com. 2013-01-13 [2013-03-03]. 
  68. ^ 1954年3月1日 美国试验第一枚氢弹. news.ifeng.com. 2013-03-01 [2013-03-03]. 
  69. ^ 國際原子能機構:不擴散核武器條約[永久失效連結]
  70. ^ 1996地底試驗. [2016-01-09]. (原始内容存档于2016-03-15). 
  71. ^ 2003年1月10日朝鮮民主主義人民共和國政府就朝鮮退出核不擴散條約所作的聲明
  72. ^ 鳳凰網:朝鮮第三次核試驗專題
  73. ^ Explosion at Navy Yard. Manhattan Project Heritage Preservation Association. [2013-04-09]. 
  74. ^ Little known heroes of the nuclear age (PDF). y12.doe.gov. 美国能源部. [2019-09-03]. 
  75. ^ International Atomic Energy Agency International Atomic Enmergy Agency, 2000 - Technology & Engineering - restoration of environments with radioactive residues : papers and discussions, 697 pages
  76. ^ Brian Clegg. Armageddon Science: The Science of Mass Destruction. St. Martins Griffin. p. 77. ISBN 978-1-250-01649-2.
  77. ^ Jim Falk (1982). Global Fission: The Battle Over Nuclear Babys, Oxford University Press, pp. 96–97.
  78. ^ A brief history of CND
  79. ^ 核武器
  80. ^ 核武器
  81. ^ 核武器:一次歷史的機遇