# 杨氏模量

（重定向自楊格模量

${\displaystyle E={\frac {\sigma }{\varepsilon }}}$

## 各種材料的楊氏模量約值

69 10,000,000

(Ti) 105-120 15,000,000-17,500,000

(W) 400-410 58,000,000-59,500,000

## 单位

• ${\displaystyle 1\ \mathrm {MPa} =\mathrm {1} \times 10^{6}\ \mathrm {Pa} =1\ {\begin{matrix}{\frac {\mathrm {N} }{\mathrm {mm} ^{2}}}\end{matrix}}}$ (1牛顿每平方毫米为1MPa)
• ${\displaystyle 1\ \mathrm {GPa} =\mathrm {1} \times 10^{9}\ \mathrm {Pa} =1\ {\begin{matrix}{\frac {\mathrm {kN} }{\mathrm {mm} ^{2}}}\end{matrix}}}$ (1千牛顿每平方毫米为1GPa)

## 參考文獻

1. ^ ELECTRONIC AND MECHANICAL PROPERTIES OF CARBON NANOTUBES (PDF). [2005-08-21]. （原始内容存档 (PDF)于2005-10-29）.

${\displaystyle (\lambda ,\,G)}$ ${\displaystyle (E,\,G)}$ ${\displaystyle (K,\,\lambda )}$ ${\displaystyle (K,\,G)}$ ${\displaystyle (\lambda ,\,\nu )}$ ${\displaystyle (G,\,\nu )}$ ${\displaystyle (E,\,\nu )}$ ${\displaystyle (K,\,\nu )}$ ${\displaystyle (K,\,E)}$ ${\displaystyle (M,\,G)}$
${\displaystyle K=\,}$ ${\displaystyle \lambda +{\tfrac {2G}{3}}}$ ${\displaystyle {\tfrac {EG}{3(3G-E)}}}$ ${\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}$ ${\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}$ ${\displaystyle {\tfrac {E}{3(1-2\nu )}}}$ ${\displaystyle M-{\tfrac {4G}{3}}}$
${\displaystyle E=\,}$ ${\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}$ ${\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}$ ${\displaystyle {\tfrac {9KG}{3K+G}}}$ ${\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}$ ${\displaystyle 2G(1+\nu )\,}$ ${\displaystyle 3K(1-2\nu )\,}$ ${\displaystyle {\tfrac {G(3M-4G)}{M-G}}}$
${\displaystyle \lambda =\,}$ ${\displaystyle {\tfrac {G(E-2G)}{3G-E}}}$ ${\displaystyle K-{\tfrac {2G}{3}}}$ ${\displaystyle {\tfrac {2G\nu }{1-2\nu }}}$ ${\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}$ ${\displaystyle {\tfrac {3K\nu }{1+\nu }}}$ ${\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}$ ${\displaystyle M-2G\,}$
${\displaystyle G=\,}$ ${\displaystyle {\tfrac {3(K-\lambda )}{2}}}$ ${\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}$ ${\displaystyle {\tfrac {E}{2(1+\nu )}}}$ ${\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}$ ${\displaystyle {\tfrac {3KE}{9K-E}}}$
${\displaystyle \nu =\,}$ ${\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}$ ${\displaystyle {\tfrac {E}{2G}}-1}$ ${\displaystyle {\tfrac {\lambda }{3K-\lambda }}}$ ${\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}$ ${\displaystyle {\tfrac {3K-E}{6K}}}$ ${\displaystyle {\tfrac {M-2G}{2M-2G}}}$
${\displaystyle M=\,}$ ${\displaystyle \lambda +2G\,}$ ${\displaystyle {\tfrac {G(4G-E)}{3G-E}}}$ ${\displaystyle 3K-2\lambda \,}$ ${\displaystyle K+{\tfrac {4G}{3}}}$ ${\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}$ ${\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}$ ${\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}$ ${\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}$ ${\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}$