本页使用了标题或全文手工转换

機械通氣

维基百科,自由的百科全书
跳到导航 跳到搜索
机械通气(辅助呼吸)
Mechanical ventilation
ICD-9-CM93.90 96.7
MeSHD012121
OPS-301英语OPS-3018-71
MedlinePlus007234

机械通气辅助通气间歇性强制通气(IMV) 是一個医学术语,即是使用呼吸机的机器来完全提供或部分提供人工的通气。机械通气有助于空气进出肺部,主要目标是帮助输送氧气和去除二氧化碳。使用机械通气的原因有很多,包括由于机械的或神经系统的原因而要保护气道,以便能确保肺部有足够的氧合,或是从肺部去除多余的二氧化碳。各种医疗保健提供者都會参与机械通气的使用,而需要呼吸机的人通常都是在加護病房接受监测。

如果机械通气涉及在氣管内產生气道的器械,则称为侵入性通气。这可以通过许多器械来实现,最常见的是通过气管內管。 而对於有意识的人,會选择面罩或鼻罩进行非侵入性通气。

机械通气的两个主要类型包括正压通气和负压通气,前者是将空气通过呼吸道推入肺部,后者是将空气拉入肺部。机械通气有许多具体的模式,几十年来随着技术的不断发展,其名称也在不断修订。

历史[编辑]

小儿麻痹症流行期间,医院工作人员使用铁肺罐式呼吸器检查一名患者。该机器在胸腔周围产生负压,从而使空气涌入肺部以平衡肺内压。

希腊医生盖伦有可能是第一个描述机械通气的人:“如果你带走一只死去的动物,用它的喉部(通过一根芦苇)吹气,你会填满它的支气管,看着它的肺得到最大的膨胀。”在 1600 年代,罗伯特·胡克对狗进行了实验来证明这一概念。 安德雷亚斯·维萨里也通过将芦苇或手杖插入动物的氣管来描述通风。[1]这些实验都比发现氧气以及氧氣在呼吸中的作用來得早。 1908 年,乔治·坡展示了他的机械呼吸器,他让狗窒息,似乎让它们起死回生。这些实验都展示了正压通气。

要实现负压通气,必须有低于大气压的压力才能将空气吸入肺部。这是在19世纪后期首次实现的,那时 John Dalziel 和 Alfred Jones 独立开发了箱式呼吸机,其中通过将患者放置在一个箱子内来实现通氣,该箱子将身体封闭在一个低于大气压的箱子中。 [2]这台机器被通俗地称为鐵肺,它经历了多次迭代的发展。在1900年代小儿麻痹症流行期间,铁肺的使用变得普遍。

随着机械通气使用的增加,已经确定了长期使用呼吸机的许多副作用,例如气压伤、感染和肺水腫。对呼吸生理学的深入了解和工程技术的进步使机械呼吸机得到了重大改进。机械通气是医院常用的救生措施,常用于ICU。

用途[编辑]

呼吸治疗师(簡稱RT) 在加護病房检查一名机械通气患者。 RT参与通气處理的优化、调整和撤机。

当患者的自主呼吸不足以维持生命时,需要进行机械通气。它也可能在预期其他生理功能即将崩溃或肺部气体交换无效时出现。由于机械通气仅用于为呼吸提供帮助,并不能治愈疾病,因此应該依序確認和治疗患者的潜在状况,以便随着时间的推移得到解决。患者入住 ICU 的主要原因之一是提供机械通气。在机械通气中监测患者有许多临床应用:增强对病理生理学的理解、辅助诊断、指导患者處理、避免并发症和评估趋势。通常,启动机械通气是为了保护气道或是减少呼吸所需要的努力。

机械通气的常见特定医学指征包括: [3] [4]

机械通气通常是作為短期措施。如果患者患有需要长期通气協助的慢性疾病,则可以在家中或在护理或康复机构中使用它。

风险和并发症[编辑]

机械通气通常是一种挽救生命的干预措施,但也会带来潜在的并发症。正压通气的一种众所周知的并发症是肺气压伤。 [8]这包括氣胸皮下氣腫、纵隔气肿和气腹。[8] [9]另一个有据可查的并发症是呼吸机相关的肺损伤,其表现为急性呼吸窘迫综合征。[10] [11] [12]其他并发症包括膈肌萎缩、[13] [14] [15]心输出量减少、[16]和氧中毒。机械通气患者出现的主要并发症之一是急性肺损伤 (ALI)/急性呼吸窘迫综合征 (ARDS)。 ALI/ARDS 被认为是导致患者发病率和死亡率的重要因素。[17] [18]

身为重症醫學的一部分,长时间的通气在许多医疗保健系统中,是一种有限的资源。基於这个原因,开始通气和取消通气的决定可能会有伦理道德的疑慮,并且通常會涉及法律命令,例如拒絕心肺復甦術命令。[19]

机械通气通常与许多痛苦的程序相关,并且程序本身可能会让人不舒服。对于需要阿片类药物治疗疼痛的婴儿,阿片类药物的潜在副作用包括喂食问题、胃和肠道活动问题、阿片类药物依赖的可能性和阿片类药物耐受性。 [20]

机制[编辑]

肺的功能是透过氧合和通气提供气体的交换。这种呼吸现象涉及气流、潮气量、顺应性、抵抗性和死腔的生理概念。 [4][21]其他相关概念包括肺泡通气、动脉 PaCO2、肺泡容积和FiO2 。肺泡通气量是单位时间内到达肺泡并参与气体交换的气体量。 [22] PaCO2 是动脉血中二氧化碳的分压,它决定了二氧化碳排出体外的能力。 [23]肺泡体积是每分钟进入和离开肺泡的空气量。 [24]机械死腔是呼吸机设计和功能中的另一个重要参数,定义为在机械设备中使用后再次呼吸的气体体积。

将患者的生理气道连接到呼吸机所需的气管內管放置图。

由于人体食道的解剖结构和需要通气的情况,在正压通气时,往往需要采取额外措施来保护气道,以使空气畅通无阻地进入气管,避免空气进入食道和胃。常用的方法是:插管,将一根管子插入气管,这为空气提供了一条暢通的通道。这可以是通过嘴或鼻子的自然开口插入的气管內管,也可以是通过颈部人工开口插入的氣管切開術。在其他情况下,一些简单的气道操作,口咽气道或喉罩气道,也可以用。如果患者能够保护自己的气道并使用无创通气或负压通气,则可能不需要气道辅助装置。

鴉片類藥物等止痛药有时用于需要用在机械通气的成人和婴儿。但对于需要机械通气的早产儿或足月儿,並没有强而有力的证据表明这些程序也可以使用常规的阿片类药物或镇静剂,然而,一些需要机械通气的特定婴儿可能需要使用阿片类药物等止痛药。目前尚不清楚可乐定作为需要机械通气的早产儿和足月儿的鎮靜劑是否安全或有效。

最初当100%氧气(1.00 FiO
2
)用于成人,很容易以计算下一个需要使用的FiO
2
,并且容易估计分流比率。[25]估计的分流比率是指未被吸收到循环中的氧气量。[25]在正常生理中,氧气和二氧化碳的气体交换发生在肺泡階段。分流的存在是指阻碍这种气体交换的任何过程,导致吸入的氧气被浪费,未含氧的血液流回左心室,它是最终为脱氧的血液提供空間的地方。[25]当使用100%氧气时,分流度估计为700mmHg - 從测量PaO
2
得到的值。对于每100 mmHg的差异,分流比率为5%。[25]超过25%的分流应促使寻找这种低氧血症的原因,例如主干插管或氣胸,并应进行相应的治疗。如果不存在此类并发症,则必须寻找其他原因,并且应使用呼氣末期正壓(PEEP) 治疗这种肺内分流。 [25]其他导致分流的原因包括:

技术[编辑]

模式[编辑]

机械通气利用几个独立的系统进行通气,称作是模式。模式有许多不同的交付的概念,但所有模式都属于三个类别之一;体积循环、压力循环、自发循环。 [26] [27]一般来说,为特定患者选择使用哪种机械通气模式取决于临床医生們对模式的熟悉程度以及某個机构中的某項设备的可用性。 [28]

正压[编辑]

Carl Gunnar Engström于1950年发明了第一台间歇性正压呼吸机,它使用放置在气管中的气管导管将空气直接输送到肺部。
新生儿机械呼吸机

现代的正压呼吸机的设计,主要是基于二战期间军方为高空战斗机飞行员提供氧气的技术发展。随着带有大容量低压力的袖带的安全气管內管被开发出来,这种呼吸机取代了铁肺。在1950年代的斯堪的纳维亚半島[29][30] >和美国的小儿麻痹症流行期间,正压呼吸机的普及率上升,是现代通气治疗的开端。通过气管切开管,由人工供應50%氧气的正压降低了小儿麻痹症和呼吸麻痹患者的死亡率。然而,由于这种人工干预需要大量的人力,机械正压呼吸机变得越来越流行。 [1]

正压呼吸机的工作原理是通过气管內管或气管造口管增加患者的气道裏的压力。正压會讓空气流入气道,直到呼吸机的這次呼吸結束。然后,气道裏的压力降至零,此時胸壁和肺部裏弹性的反彈力就會推动潮气量——透过被动呼气的哈氣。

负压机[编辑]

负压机械呼吸机製造時有小型、现场型和大型等等形式。[31]小型设备的著名设计被称为胸甲,这是一种壳状物,使用合适的外壳和软气囊的组合仅对胸部产生负压。近年来,该设备已使用具有多个密封件的各种尺寸的聚碳酸酯外壳和高压振荡泵制造,以进行双相胸甲通气[32]它的主要用途是用于具有一些残余肌肉功能的神经肌肉疾病患者。 [33]后來,有更大的型式可以用,特别是在英国的小儿麻痹症医院,如伦敦的圣托马斯医院牛津的约翰拉德克利夫医院。 [1]

较大的装置起源于铁肺,也称为 Drinker and Shaw箱,它于1929年开发,是最早用于长期通风的负压机器之一。[32]它在20世纪得到大富地改进和使用,主要是由于1940年代席卷世界的小儿麻痹症流行。该机器实际上是一个大型细长水箱,将患者包裹到颈部。 [2]颈部用橡胶垫圈密封,使患者的臉部(和气道)暴露在室内空气中。虽然氧气二氧化碳在血液和肺部空隙之间的交换是通过扩散作用进行的,不需要做任何外部工作,但空气必须被移入和移出肺部以使其可用于氣體交換过程。在自主呼吸中,由呼吸肌在胸膜腔内产生负压,由此在大气压力胸腔内的压力之间产生梯度,因而产生了气流。在铁肺中,通过泵,空气被机械抽出,使槽内产生真空,因而产生负压。[32]这种负压会导致胸部扩张,从而导致肺内压降低,并增加环境空气进入肺部的流量。随着真空的释放,槽内的压力与环境压力相等,胸部和肺部的弹性反彈力导致被动呼气。然而,当真空产生时,腹部也会随着肺一起扩张,切断回流到心脏的静脉,导致静脉血在下肢汇集。患者可以正常说话和吃饭,并且可以通过一系列精心佈置的镜子看到世界。有些人可以非常成功地在这些铁肺中維持数年。 [2]

间歇性腹压呼吸机[编辑]

另一种类型是间歇性腹压呼吸机,它藉由一個膨胀的气囊从外部施加压力,强制呼气,有时称为吐气。第一个这样的装置是布保二氏人工呼吸器(Bragg-Paul pulsator)。[34] [35]由Puritan Bennett所制造的Pneumobelt是一种此类设备的名称,它在一定程度上已成为该类型的通用名称[35] [36]

监控[编辑]

通气的患者之中,在滴定FIO2时通常使用脉搏血氧仪。 Spo2的可靠目标是大于95%。[37]

有不同的策略可以用来确定这些ARDS患者的PEEP程度[5],透過食管压力、[38]压力指数[39]静态气道压力-容积曲线引导。[40]对于此类患者,一些专家建议将PEEP限制在低水平(~10cmH2O)。对于弥漫性通气缺失的患者,可以使用PEEP,前提是它不会导致平台压升高到超過上拐点。

大多数现代呼吸机都有基本的监测工具。也有独立于呼吸机工作的监视器,允许在移除呼吸机后对患者进行测量,例如氣管测试。

取下机械通气[编辑]

取下机械通气的时间點——也称为撤机——是一个重要的考虑因素。需要机械通气的人若是能够支持自己的通气和氧合,则应考虑停止通气,并应持续评估。[27][3]在考虑取下时,有几个客观参数需要查找,但並没有适用于所有患者的具体标准。

快速浅呼吸指数(RSBI,呼吸频率与潮气量的比值(f/VT),以前称为“Yang Tobin 指数”或“Tobin 指数”,是以Karl Yang博士和洛约拉大学医学中心的Martin J. Tobin教授的名字命名。是研究最充分和最常被使用的撤机预测因子之一,没有其他预测因子被证明是更好的。它在机械通气患者的前瞻性队列研究中得到描述,该研究发现RSBI>105次呼吸/分钟/升与撤机失败相关,而RSBI<105次呼吸/分钟/升预测撤机成功,具有敏感性、特异性、阳性预测值和阴性预测值分别为97%、64%、78%、95%。[41]

呼吸机的种类[编辑]

袋瓣罩甦醒球(此為SMART BAG MO產品)

呼吸机有许多不同的样式和方法来呼吸以维持生命。[4]有手动呼吸机,例如袋瓣罩甦醒球和麻醉袋呼吸机,需要用户将呼吸机放在面部或人工气道上,并用手保持呼吸。机械呼吸机是不需要操作员氣力的呼吸机,通常是计算机控制或气动控制的。[27]机械呼吸机通常需要通过电池或墙壁插座(直流或交流)供电,尽管有一些呼吸机是在气动系统上工作,是不需要电源的。有多种可用于通风的技术,分为两大类(然后是次要的一类),这两类是较早的负压机制技术和较常见的正压类型。

常见的正压机械呼吸机包括:

  1. 运输呼吸机——这些呼吸机体积小,更坚固,可以气动或通过交流或直流电源供电。
  2. 重症监护呼吸机——这些呼吸机更大,通常使用交流电源运行(尽管几乎所有呼吸机都包含电池以促进设施内的运输并在发生电源故障时作为备用)。这种类型的呼吸机通常可以更好地控制各种通气参数(例如吸气上升时间)。许多ICU呼吸机还包含图形以提供每次呼吸的视觉反馈。
  3. 新生儿呼吸机(氣泡式CPAP)— 设计时考虑到早产儿,这些是ICU呼吸机的一个专用的次模組,旨在为这些患者提供更小、更精确的通气量和压力。
  4. 正壓呼吸器 (PAP) — 这些呼吸机专为非侵入性通气而设计。这包括在家中用于治疗睡眠呼吸暂停慢性阻塞性肺病等慢性病的呼吸机。

呼吸传递机制[编辑]

触发[编辑]

导致机械呼吸机输送呼吸即是触发。呼吸可以由患者自己呼吸、或是呼吸机操作员按下手动呼吸按钮、或是由呼吸机根据设定的呼吸速率和通气模式触发。

循环[编辑]

循环是导致呼吸从吸气阶段过渡到呼气阶段的原因。当达到设定时间时,或者当根据呼吸类型和设置达到预设流量或在呼吸期间输送的最大流量的百分比时,可以通过机械呼吸机循环呼吸。当达到高压限值等警报条件时,也可以循环呼吸,这是压力调节容积控制的主要策略。

限制[编辑]

限制是指呼吸的控制方式。呼吸可能被限定在一個預先设定的最大回路压力或一個預先设定的最大流量。

呼气[编辑]

机械通气中的呼气,几乎都是完全被动的。呼吸机的呼气阀打开,允许呼气流量,直到达到基线压力(PEEP)。呼气流量由患者因素决定,例如顺应性和抵抗性。

作为与呼吸机的连接的人工气道[编辑]

有多种程序和机械装置可以防止气道塌陷、漏气和误吸:

  • 面罩— 在复苏和麻醉下的小手术中,面罩通常足以实现密封以防止空气洩漏。无意识患者的气道通畅可以通过操作下颌或使用鼻咽口咽气道来维持。这些设计用于分别通过鼻子或嘴,为咽部提供空气通道。佩戴不当的口罩通常会导致鼻樑溃疡,这对一些患者来说是个问题。面罩也用于意识清醒的患者的无创通气。但是,全面罩不能提供防止吸入的保护。在没有足够有创通气能力(或在一些较轻的情况下)的COVID-19流行病中,可以考虑无创通气,[42]但建议为护理人员穿上加压防护服,因为佩戴不当的口罩可能会散发出污染物质气溶胶。[43]
  • 气管插管通常用于持续数小时至数周的机械通气。一根管子通过鼻子(鼻气管插管)或嘴(经口气管插管)插入氣管。在大多数情况下,带有充气袖口的管子用于防止泄漏和吸入。带袖套的插管被认为可以提供最好的防止误吸的保护。气管插管不可避免地会引起疼痛和咳嗽。因此,除非患者失去知觉或因其他原因被麻醉,通常会给予镇静药物以提供管子的耐受性。气管插管的其他缺点包括损伤鼻咽口咽的黏膜内层以及声门下狭窄。
  • 声门上呼吸道— 声门上呼吸道 (SGA) 是位于气管上方和外侧的任何气道装置,可替代气管插管。大多数设备通过充气的面罩或袖带来隔离气管以供氧气输送。较新的设备具有用于抽吸的食道端口或用于管交换的端口以允许插管。声门上气道与气管插管的主要区别在于它们不会阻止误吸。1998年引入喉罩气道(LMA) 后,声门上气道装置已成为择期麻醉和紧急麻醉的主流。 [44]有许多类型的 SGA 可用,包括食管气管联合管(ETC)、喉管 (LT) 和过时的食管闭孔气道(EOA)。
  • 环甲膜切开术— 對於气管插管已經失败、需要紧急气道處理的患者可能需要一個通过环甲膜上的手术开口插入的气道。这类似于气管切开术,但環甲膜切開術保留用于於紧急處理。[45]
  • 气管切开术— 当患者需要数周的机械通气时,气管切开术可能提供最合适的气管通路。气管切开术是通过外科手术创建的进入气管的通道。气管切开插管耐受性良好,通常不需要使用任何镇静药物。对于已患有严重呼吸系统疾病的患者,或任何预计难以摆脱机械通气的患者,即肌肉储备很少的患者,可在治疗期间及早插入气管造口管。
  • 咬嘴— 不太常见的接口,不提供防吸入保护。如果患者無法握住它,有带法兰的唇形吸嘴可帮助将它们固定到位。

參見[编辑]

  • 生化性損傷
  • 查爾斯·赫德勒(Charles Hederer),肺呼吸器的发明者

注釋[编辑]

参考[编辑]

  1. ^ 1.0 1.1 1.2 History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury. 美國呼吸和重症監護醫學雜誌. May 2015, 191 (10): 1106–1115. PMID 25844759. doi:10.1164/rccm.201503-0421PP. 
  2. ^ 2.0 2.1 2.2 Investigating the effect of materials and structures for negative pressure ventilators suitable for pandemic situation. Emergent Materials. April 2021, 4 (1): 313–327. PMC 8012748可免费查阅. PMID 33821231. doi:10.1007/s42247-021-00181-x. 
  3. ^ 3.0 3.1 Mechanical ventilation. 新英格蘭醫學雜誌. April 1994, 330 (15): 1056–1061. PMID 8080509. doi:10.1056/NEJM199404143301507. 
  4. ^ 4.0 4.1 4.2 Tobin, Martin J. Mechanical Ventilation. 新英格蘭醫學雜誌. 1994-04-14, 330 (15): 1056–1061. ISSN 0028-4793. PMID 8080509. doi:10.1056/NEJM199404143301507 (英语). 
  5. ^ 5.0 5.1 Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. 新英格蘭醫學雜誌. May 2000, 342 (18): 1301–1308. PMID 10793162. doi:10.1056/NEJM200005043421801. 
  6. ^ World Health Organization. Surveillance strategies for COVID-19 human infection. Interim guidance. Pediatria I Medycyna Rodzinna. 2020-05-20, 16 (1): 40–44. ISSN 1734-1531. doi:10.15557/pimr.2020.0006. 
  7. ^ BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. June 2017, 72 (Suppl 1): ii1–ii90. PMID 28507176. doi:10.1136/thoraxjnl-2016-209729. 
  8. ^ 8.0 8.1 Mechanisms of ventilator-induced lung injury. Critical Care Medicine. January 1993, 21 (1): 131–143. PMID 8420720. doi:10.1097/00003246-199301000-00024. 
  9. ^ Approaches to conventional mechanical ventilation of the patient with acute respiratory distress syndrome. Respiratory Care. October 2011, 56 (10): 1555–1572. PMID 22008397. doi:10.4187/respcare.01387. 
  10. ^ Ventilator-associated tracheobronchitis: the impact of targeted antibiotic therapy on patient outcomes. Chest. February 2009, 135 (2): 521–528. PMID 18812452. doi:10.1378/chest.08-1617. 
  11. ^ International consensus conferences in intensive care medicine: Ventilator-associated Lung Injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societé de Réanimation de Langue Française, and was approved by the ATS Board of Directors, July 1999. 美國呼吸和重症監護醫學雜誌. December 1999, 160 (6): 2118–2124. PMID 10588637. doi:10.1164/ajrccm.160.6.ats16060. 
  12. ^ Response of ventilator-dependent patients to delayed opening of exhalation valve. 美國呼吸和重症監護醫學雜誌. July 2002, 166 (1): 21–30. PMID 12091166. doi:10.1164/rccm.2107143. 
  13. ^ Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. 美國呼吸和重症監護醫學雜誌. February 2011, 183 (3): 364–371. PMID 20813887. doi:10.1164/rccm.201004-0670OC. 
  14. ^ Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. 美國呼吸和重症監護醫學雜誌. January 2018, 197 (2): 204–213. PMID 28930478. doi:10.1164/rccm.201703-0536OC. 
  15. ^ Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. 新英格蘭醫學雜誌. March 2008, 358 (13): 1327–1335. PMID 18367735. doi:10.1056/NEJMoa070447. 
  16. ^ Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Critical Care Medicine. November 2000, 28 (11): 3631–3636. PMID 11098965. doi:10.1097/00003246-200011000-00014. 
  17. ^ Acute lung injury in critical neurological illness. Critical Care Medicine. February 2012, 40 (2): 587–593. PMID 21946655. doi:10.1097/CCM.0b013e3182329617. 
  18. ^ Mucociliary transport in ICU patients. Chest. January 1994, 105 (1): 237–241. PMID 8275739. doi:10.1378/chest.105.1.237. 
  19. ^ Prolonged mechanical ventilation: are you a lumper or a splitter?. Respiratory Care. November 2011, 56 (11): 1859–1860. PMID 22035828. doi:10.4187/respcare.01600. 
  20. ^ Opioids for newborn infants receiving mechanical ventilation. The Cochrane Database of Systematic Reviews. March 2021, 2021 (3): CD013732. PMC 8121090可免费查阅. PMID 33729556. doi:10.1002/14651858.CD013732.pub2. 
  21. ^ Comparison of Published Pressure Gradient Symbols and Equations in Mechanics of Breathing (PDF). 2006 [2021-04-16]. (原始内容 (PDF)存档于2022-06-14). 
  22. ^ 21.5A: Pressure Changes During Pulmonary Ventilation. LibreTexts. 2020-05-26 [2021-04-16]. (原始内容存档于2022-06-18). 
  23. ^ Arterial Blood Gases (ABG) Test. Michigan Medicine. 2020-10-26 [2021-04-16]. (原始内容存档于2022-05-04). 
  24. ^ Alveolar Ventilation. LSUHSC. 2013-07-15 [2021-04-16]. (原始内容存档于2022-06-10). 
  25. ^ 25.0 25.1 25.2 25.3 25.4 25.5 25.6 Mechanical ventilation modification of settings. 2018-04-13 [2021-04-16]. (原始内容存档于2022-06-10). 
  26. ^ Prella, Maura; Feihl, François; Domenighetti, Guido. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Chest. October 2002, 122 (4): 1382–1388 [2022-03-16]. ISSN 0012-3692. PMID 12377869. doi:10.1378/chest.122.4.1382. (原始内容存档于2022-06-11). 
  27. ^ 27.0 27.1 27.2 Chiumello, D.; Pelosi, P.; Calvi, E.; Bigatello, L. M.; Gattinoni, L. Different modes of assisted ventilation in patients with acute respiratory failure. The European Respiratory Journal. October 2002, 20 (4): 925–933 [2022-03-16]. ISSN 0903-1936. PMID 12412685. doi:10.1183/09031936.02.01552001. (原始内容存档于2022-06-19). 
  28. ^ How is mechanical ventilation employed in the intensive care unit? An international utilization review. 美國呼吸和重症監護醫學雜誌. May 2000, 161 (5): 1450–1458. PMID 10806138. doi:10.1164/ajrccm.161.5.9902018. 
  29. ^ Engstrom CG. Treatment of severe cases of respiratory paralysis by the Engström universal respirator. British Medical Journal. September 1954, 2 (4889): 666–669. PMC 2079443可免费查阅. PMID 13190223. doi:10.1136/bmj.2.4889.666. 
  30. ^ US US2699163A,Engström, Carl Gunnar,「Respirator」,发行于1951-06-25 页面存档备份,存于互联网档案馆
  31. ^ Hill, N. S.; Redline, S.; Carskadon, M. A.; Curran, F. J.; Millman, R. P. Sleep-disordered breathing in patients with Duchenne muscular dystrophy using negative pressure ventilators. Chest. December 1992, 102 (6): 1656–1662 [2022-03-16]. ISSN 0012-3692. PMID 1446467. doi:10.1378/chest.102.6.1656. (原始内容存档于2022-06-11). 
  32. ^ 32.0 32.1 32.2 Gorini, M. Effect of assist negative pressure ventilation by microprocessor based iron lung on breathing effort. Thorax. 2002-03-01, 57 (3): 258–262. PMC 1746266可免费查阅. PMID 11867832. doi:10.1136/thorax.57.3.258. 
  33. ^ Hill, Nicholas S.; Redline, Susan; Carskadon, Mary A.; Curran, Francis J.; Millman, Richard P. Sleep-Disordered Breathing in Patients with Duchenne Muscular Dystrophy Using Negative Pressure Ventilators. Chest. 1992-12-01, 102 (6): 1656–1662. ISSN 0012-3692. PMID 1446467. doi:10.1378/chest.102.6.1656 (英语). 
  34. ^ Intermittent abdominal pressure ventilator in a regimen of noninvasive ventilatory support. Chest. March 1991, 99 (3): 630–636. PMID 1899821. doi:10.1378/chest.99.3.630. 
  35. ^ 35.0 35.1 Breath of Life: The Role of the Ventilator in Managing Life-Threatening Illnesses. Scarecrow Press. 2001: 187 [11 October 2016]. ISBN 9780810834880. (原始内容存档于2022-06-11). 
  36. ^ Mosby's Medical Dictionary 8. 2009 [11 October 2016]. (原始内容存档于2016-10-12). 
  37. ^ Reliability of pulse oximetry in titrating supplemental oxygen therapy in ventilator-dependent patients. Chest. June 1990, 97 (6): 1420–1425. PMID 2347228. doi:10.1378/chest.97.6.1420. 
  38. ^ Mechanical ventilation guided by esophageal pressure in acute lung injury. 新英格蘭醫學雜誌. November 2008, 359 (20): 2095–2104. PMC 3969885可免费查阅. PMID 19001507. doi:10.1056/NEJMoa0708638. 
  39. ^ ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. 美國呼吸和重症監護醫學雜誌. October 2007, 176 (8): 761–767. PMID 17656676. doi:10.1164/rccm.200702-193OC. 
  40. ^ Respiratory pressure-volume curves. McGraw-Hill. 1998: 597–616. ISBN 9780070650947. 
  41. ^ A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. 新英格蘭醫學雜誌. May 1991, 324 (21): 1445–1450. PMID 2023603. doi:10.1056/NEJM199105233242101. 
  42. ^ Non-invasive ventilation versus mechanical ventilation in hypoxemic patients with COVID-19. Infection. October 2021, 49 (5): 989–997. PMC 8179090可免费查阅. PMID 34089483. doi:10.1007/s15010-021-01633-6. 
  43. ^ Care for Critically Ill Patients With COVID-19. JAMA. April 2020, 323 (15): 1499–1500. PMID 32159735. doi:10.1001/jama.2020.3633. 
  44. ^ Supraglottic airway devices: recent advances. Contin Educ Anaesth Crit Care. December 2011, 11 (2): 56–61. doi:10.1093/bjaceaccp/mkq058. 
  45. ^ Rapid sequence induction in the emergency department: a strategy for failure. Emergency Medicine Journal. March 2002, 19 (2): 109–113. PMC 1725832可免费查阅. PMID 11904254. doi:10.1136/emj.19.2.109. 

外部链接[编辑]