歐爾調和數

维基百科,自由的百科全书
跳转至: 导航搜索

若一個正整數n的所有因數調和平均是整數,n便稱為調和數(Harmonic number)。它又稱歐爾數(Ore number),因為它最先出現在一篇奧斯丁·歐爾在1948年發表的論文內。

首幾個調和數是: 1628140270496,672,1638,2970,6200,8128,8190 (OEIS中的数列A001599

所有完全數都是調和數。暫時除了1之外,並沒有發現奇調和數。1972年,W. H. Mills證明除了1之外,10^7內沒有奇調和數。