# 正三角形鑲嵌

（点击查看大图）

36

=

{3[3]}

3 | 3 3
| 3 3 3

p3m1, [3[3]], (*333)
p3, [3[3]]+, (333)

p6, [6,3]+, (632)
p3, [3[3]]+, (333)

3.3.3.3.3.3（或36

(對偶多面體)

## 上色的正三角形鑲嵌

上色索引 圖示 上色 對稱群 111111 121212 121314 121213 .mw-parser-output .tile-row{clear:left}.mw-parser-output .tile-row.hex.even{margin-left:-52px}.mw-parser-output .tile-cell{float:left;width:50px;height:50px}.mw-parser-output .tile-cell.hex{float:left;margin:auto auto -29.85px 0;width:auto;height:auto}.mw-parser-output .tile-cell.tri{float:left;margin-left:-60px;width:0;height:0;border-bottom:104px solid transparent;border-left:60px solid transparent;border-right:60px solid transparent}.mw-parser-output .tile-cell.tri.inv{border-top:104px solid transparent;border-bottom:none}.mw-parser-output .outline .tile-cell{outline:2px #000 solid}.mw-parser-output .gap .tri{margin-left:-55.5px}.mw-parser-output .gap .tri:nth-child(1){margin-left:-68px;padding:2px 2px 2px 2px}.mw-parser-output .gap .tri:nth-child(2){margin-left:-60px}.mw-parser-output .tile-row .tri .center{position:relative;top:20px;left:-10px}.mw-parser-output .tile-row .inv .center{top:-110px}.mw-parser-output .tile-cell.hex div:nth-child(1){width:0;border-bottom:30px solid;border-bottom-color:inherit;border-left:52px solid transparent;border-right:52px solid transparent}.mw-parser-output .tile-cell.hex div:nth-child(2){width:104px;height:60px}.mw-parser-output .tile-cell.hex div:nth-child(3){width:0;border-top:30px solid;border-top-color:inherit;border-left:52px solid transparent;border-right:52px solid transparent}.mw-parser-output .qrcode{background-color:white;border:1px solid transparent}.mw-parser-output .qrcode .F{background-color:#fff}.mw-parser-output .qrcode .T{background-color:#000}.mw-parser-output .qrcode td>span{width:8px;height:8px}.mw-parser-output .cube-main{width:300px;height:300px;margin:0 auto;margin-top:150px;transform:translateZ(-50px)rotateX(335deg)rotateY(335deg)rotateZ(0deg)translateZ(50px);transform-style:preserve-3d;transform-origin:50%50%;transition:transform 2s linear}@keyframes cube-spinby2{from{transform:rotateX(335deg)rotateY(425deg)rotateZ(0deg)}to{transform:rotateX(335deg)rotateY(785deg)rotateZ(0deg)}}@keyframes cube-spin{from{transform:translateZ(-50px)rotateX(335deg)rotateY(425deg)rotateZ(0deg)translateZ(50px)}to{transform:translateZ(-50px)rotateX(335deg)rotateY(785deg)rotateZ(0deg)translateZ(50px)}}.mw-parser-output .cube-main.animate{animation:cube-spin 5s infinite linear}.mw-parser-output .cube-main.by2{width:300px;height:300px;margin:0 auto;margin-top:100px;transform:rotateX(335deg)rotateY(335deg)rotateZ(0deg);transform-style:preserve-3d;transform-origin:20%20%;transition:transform 2s linear}.mw-parser-output .cube-main.by2.animate{animation:cube-spinby2 5s infinite linear}.mw-parser-output .cube{opacity:1;position:absolute;height:100px;width:100px}.mw-parser-output .col,.mw-parser-output .row,.mw-parser-output .lvl{transform-style:preserve-3d}.mw-parser-output .by2 .col1{transform:translateX(-50px)}.mw-parser-output .col2{transform:translateX(100px)}.mw-parser-output .col3{transform:translateX(200px)}.mw-parser-output .by2 .col3{transform:translateX(50px)}.mw-parser-output .row1{transform:translateZ(-150px)}.mw-parser-output .by2 .row1{transform:translateZ(-50px)}.mw-parser-output .row2{transform:translateZ(-50px)}.mw-parser-output .row3{transform:translateZ(50px)}.mw-parser-output .by2 .row3{transform:translateZ(50px)}.mw-parser-output .lvl1{z-index:9}.mw-parser-output .by1 .lvl1{z-index:9;transform:translateY(-100px)translateX(-100px)}.mw-parser-output .by2 .lvl1{z-index:9;transform:translateY(-50px)}.mw-parser-output .lvl2{z-index:8;transform:translateY(100px)}.mw-parser-output .by1 .lvl2{z-index:8;transform:translateX(-100px)}.mw-parser-output .lvl3{z-index:7;transform:translateY(200px)}.mw-parser-output .by1 .lvl3{z-index:7;transform:translateY(100px)translateX(-100px)}.mw-parser-output .by2 .lvl3{z-index:7;transform:translateY(50px)}.mw-parser-output .cube .cube-front,.mw-parser-output .cube .cube-top,.mw-parser-output .cube .cube-bottom,.mw-parser-output .cube .cube-left,.mw-parser-output .cube .cube-right,.mw-parser-output .cube .cube-back{position:absolute;height:60px;width:60px;padding:18px;border:3px solid #000;border-radius:5px}.mw-parser-output .by1 .cube-front,.mw-parser-output .by1 .cube-top,.mw-parser-output .by1 .cube-bottom,.mw-parser-output .by1 .cube-left,.mw-parser-output .by1 .cube-right,.mw-parser-output .by1 .cube-back{height:260px;width:260px}.mw-parser-output .cube-front{transform:translateZ(50px);z-index:10}.mw-parser-output .cube-top{transform:rotateX(90deg)translateZ(50px);z-index:10}.mw-parser-output .cube-bottom{transform:rotateX(-90deg)translateZ(50px)}.mw-parser-output .cube-left{transform:rotateY(-90deg)translateZ(50px)}.mw-parser-output .cube-right{transform:rotateY(90deg)translateZ(50px);z-index:10}.mw-parser-output .cube-back{transform:translateZ(-50px)}.mw-parser-output .tile-grid .white,.mw-parser-output .cube .white{background-color:#fff}.mw-parser-output .tile-grid .yellow,.mw-parser-output .cube .yellow{background-color:yellow}.mw-parser-output .tile-grid .orange,.mw-parser-output .cube .orange{background-color:orange}.mw-parser-output .tile-grid .red,.mw-parser-output .cube .red{background-color:red}.mw-parser-output .tile-grid .green,.mw-parser-output .cube .green{background-color:green}.mw-parser-output .tile-grid .blue,.mw-parser-output .cube .blue{background-color:blue}.mw-parser-output .tile-grid .none,.mw-parser-output .cube .none{background-color:#777}.mw-parser-output .tile-grid .magenta,.mw-parser-output .cube .magenta{background-color:magenta}.mw-parser-output .tile-grid .lime,.mw-parser-output .cube .lime{background-color:lime}.mw-parser-output .tile-grid .cyan,.mw-parser-output .cube .cyan{background-color:cyan}.mw-parser-output .tile-grid .null,.mw-parser-output .cube .null{background-color:transparent}.mw-parser-output .tile-grid .black,.mw-parser-output .cube .black{background-color:#000}.mw-parser-output .Yuansuzhouqibiao_nav span{display:block;overflow:hidden;padding:0;color:transparent}.mw-parser-output .Yuansuzhouqibiao_nav td{border:none;padding:0}.mw-parser-output .Yuansuzhouqibiao_alkali{background-color:#ff6666}.mw-parser-output .Yuansuzhouqibiao_alkali_predicted{background-color:#ffa1a1}.mw-parser-output .Yuansuzhouqibiao_alkali_earth{background-color:#ffdead}.mw-parser-output .Yuansuzhouqibiao_alkali_earth_predicted{background-color:#ffecd3}.mw-parser-output .Yuansuzhouqibiao_lanthanide{background-color:#ffbfff}.mw-parser-output .Yuansuzhouqibiao_actinide{background-color:#ff99cc}.mw-parser-output .Yuansuzhouqibiao_superactinides{background-color:#b5c8ff}.mw-parser-output .Yuansuzhouqibiao_superactinides_predicted{background-color:#d1ddff}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide{background-color:#a0e032}.mw-parser-output .Yuansuzhouqibiao_eka_superactinide_predicted{background-color:#c6dd9d}.mw-parser-output .Yuansuzhouqibiao_transition{background-color:#ffc0c0}.mw-parser-output .Yuansuzhouqibiao_transition_predicted{background-color:#ffe2e2}.mw-parser-output .Yuansuzhouqibiao_post_transition{background-color:#cccccc}.mw-parser-output .Yuansuzhouqibiao_post_transition_predicted{background-color:#dfdfdf}.mw-parser-output .Yuansuzhouqibiao_metalloid{background-color:#cccc99}.mw-parser-output .Yuansuzhouqibiao_metalloid_predicted{background-color:#e2e2aa}.mw-parser-output .Yuansuzhouqibiao_diatomic{background-color:#e7ff8f}.mw-parser-output .Yuansuzhouqibiao_diatomic_predicted{background-color:#F3FFC7}.mw-parser-output .Yuansuzhouqibiao_polyatomic{background-color:#a1ffc3}.mw-parser-output .Yuansuzhouqibiao_polyatomic_predicted{background-color:#d0ffe1}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal{background-color:#a0ffa0}.mw-parser-output .Yuansuzhouqibiao_reactive_nonmetal_predicted{background-color:#d3ffd3}.mw-parser-output .Yuansuzhouqibiao_halogen{background-color:#ffff99}.mw-parser-output .Yuansuzhouqibiao_halogen_predicted{background-color:#ffffd6}.mw-parser-output .Yuansuzhouqibiao_noble_gas{background-color:#c0ffff}.mw-parser-output .Yuansuzhouqibiao_noble_gas_predicted{background-color:#ddffff}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_supercritical_atom_predicted{background-color:#f4f4c6}.mw-parser-output .Yuansuzhouqibiao_no_electron{background-color:#d0d0d0}.mw-parser-output .Yuansuzhouqibiao_s_block{background-color:#ff6699}.mw-parser-output .Yuansuzhouqibiao_s_block_predicted{background-color:#FBD}.mw-parser-output .Yuansuzhouqibiao_p_block{background-color:#99ccff}.mw-parser-output .Yuansuzhouqibiao_p_block_predicted{background-color:#CEF}.mw-parser-output .Yuansuzhouqibiao_d_block{background-color:#ccff99}.mw-parser-output .Yuansuzhouqibiao_d_block_predicted{background-color:#DFC}.mw-parser-output .Yuansuzhouqibiao_ds_block{background-color:#90ffb0}.mw-parser-output .Yuansuzhouqibiao_ds_block_predicted{background-color:#C7FFD7}.mw-parser-output .Yuansuzhouqibiao_f_block{background-color:#66ffcc}.mw-parser-output .Yuansuzhouqibiao_f_block_predicted{background-color:#BFE}.mw-parser-output .Yuansuzhouqibiao_g_block{background-color:#ffcc66}.mw-parser-output .Yuansuzhouqibiao_g_block_predicted{background-color:#FDA}.mw-parser-output .Yuansuzhouqibiao_h_block{background-color:#F0908C}.mw-parser-output .Yuansuzhouqibiao_h_block_predicted{background-color:#F0B6B4}.mw-parser-output .Yuansuzhouqibiao_unknown{background-color:#e8e8e8}.mw-parser-output .Yuansuzhouqibiao_error_type{background-color:#000000}.mw-parser-output .Yuansuzhouqibiao_null{background-color:inherit}.mw-parser-output .Yuansuzhouqibiao_maybe_not_exist{background-color:white}.mw-parser-output .Yuansuzhouqibiao_none_type{background-color:#c0c0c0}.mw-parser-output .Yuansuzhouqibiao_gas{color:green}.mw-parser-output .Yuansuzhouqibiao_liquid{color:blue}.mw-parser-output .Yuansuzhouqibiao_solid{color:black;font-weight:bold}.mw-parser-output .Yuansuzhouqibiao_unknow_phase{color:grey}111111 121212 121412 121312 *632(p6m)[6,3] *333(p3m1)[3[3]] = [1+,6,3] 333(p3)[3[3]]+ 3*3(p31m)[6,3+] 6 | 3 2 3 | 3 3 | 3 3 3 =

## A2晶格和圆堆砌

A2*晶格（又称A23），可由所有3种A2晶格组合得来，就等价于A2晶格。

+ + = 的对偶 =

A2晶格的沃罗诺伊图正六边形镶嵌，它也是正三角形镶嵌的对偶。因此，正六边形镶嵌也与最密圆堆砌有直接的对应关系。

A2晶格圆堆砌 A*
2

## 相關半正鑲嵌

{6,3} t0,1{6,3} t1{6,3} t1,2{6,3} t2{6,3} t0,2{6,3} t0,1,2{6,3} s{6,3} h{6,3} h1,2{6,3}

V6.6.6 V3.12.12 V3.6.3.6 V6.6.6 V3.3.3.3.3.3 V3.4.12.4 V.4.6.12 V3.3.3.3.6 V3.3.3.3.3.3

n 1 2 3 4 5 6
2n邊形鑲嵌 {2,3} {4,3} {6,3} {8,3} {10,3} {12,3} {∞,3} {iπ/λ,3}

h{2,3}

h{4,3}

h{6,3}

h{8,3}

h{10,3}

h{12,3}
...
h{∞,3}

h{iπ/λ,3}