正規化

维基百科,自由的百科全书
跳转至: 导航搜索

物理學中,尤其是量子場論正規化(regularization)是一項處理無限大發散以及一些不合理表示式的方法,其方法透過引入一項輔助性的概念——正規子(regulator)。舉例來說,若短距離物理效應出現發散,則設定一項空間中最小距離\epsilon \,來解決這情形。正確的物理結果是讓正規子消失(此例是\epsilon\to 0)的極限情形,不過正規子的用意就在於當它是有限值,理論結果也是有限值的。正規化是將數學中的發散級數可和性方法(summability methods)用在物理學問題上。

然而,理論結果通常包含了一些項,是正比於例如\frac{1}{\epsilon}的式子,若取極限\epsilon\to 0則會沒有良好定義。正規化是獲得一個完整、有限且有意義的結果的第一步;在量子場論,通常會接著一個相關但是獨立的技術方法稱作重整化。重整化則是基於對一些有著類似\frac{1}{\epsilon}表示式的物理量的要求,要求其應該等於觀測值。如此的約束條件則允許我們計算一些看似發散的物理量的有限值。

特定例子[编辑]

正規化的特定例子有:

相關條目[编辑]